onuralver
Oct 8, 2017
=Cryptography with Liberty BASIC : 103 RSA Algorithm=
Onur Alver (//CryptoMan//)
[[toc|flat]]
----
**RSA ALGORITHM**
There is an excellent description about RSA here . <span style="color: #e0155e;">https://www.di-mgt.com.au/rsa_alg.html</span>
==Step by Step RSA Description==
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">RSA Algorithm depends of the difficulty of factoring very large composite numbers.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Remember, **composite number n is a product of two or more prime numbers**. For example</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">for example **4,6,8,9,10,12,15.... are composite numbers**. While **2,3,5,7,11,13... are**</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">**prime numbers**. Prime numbers are the root numbers of all other numbers in the universe.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">2 is only even prime number and all other prime numbers have to be odd. Prime numbers</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">are only divisible by themselves without leaving any remainder.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">The difficulty is finding all of the prime numbers and there are infinite number of</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">prime numbers. Especially, if you are trying to find huge prime numbers of hundred</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">or more digits.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">When you select 15, it is easy to guess 3 and 5 as the prime factors of 15. In a strong</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">RSA implementation we will choose much bigger prime numbers p and q such that n = p.q</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">such as the following huge composite number below:</span>
[[code]]
n =
11929413484016950905552721133125564964460656966152763801206748195494305685115033
38063159570377156202973050001186287708466899691128922122454571180605749959895170
80042105263427376322274266393116193517839570773505632231596681121927337473973220
312512599061231322250945506260066557538238517575390621262940383913963
[[code]]
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Can you guess what is **p** and **q** from this **n**?</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Not so easy, this is the idea.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Now, we have to generate two large prime numbers p and q to determine </span>
**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">n = p.q called common modulus n.</span>**
**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">t = (p-1).(q-1) called Euler-Totient number t.</span>**
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Start by chosing an **e** such as **3** an easy to use small prime, and **d** related to **e**</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">such that following formulas to calculate **c** **enciphered data** from **a** **clear data** and </span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">recover the clear data **a** from **c** by using exponent **d**.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">You can find d iteratively from the equality e.d ≡ 1 mod t which can be rephrased</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">as follows "Which d multiplied by e divided by t have a remainder of 1?"</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">We will call (e,n) our Public Key and (d,n) the secret key or private key.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Alice can publish or send her Public Key (e,n) to Bob to send her his private</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">messages by email and Evil Corp's intelligence officer Eve reading every mail</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">from Evil Corp's POP3/SNMP traffic should not be able to make any sense from</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">the garbled text. </span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Bob will encipher the his message with the following encryption formula:</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">c = a </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">e</span><span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> mod n</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Finally, Alice will decipher the encrypted message c using the following</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">decryption formula:</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">a = c </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">d</span><span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> mod n</span>
==Simple RSA Example with Small Primes==
<span style="background-color: #fffff0;">Let's choose two small primes **p=3** and **q=11**</span>
<span style="background-color: #fffff0;">Therefore, n = p . q = 3 x 11 = 33, the common modulus **n=33**.</span>
<span style="background-color: #fffff0;">Next, let's find the Euler-Totient number **t**=(p-1)(q-1)=(3-1)(11-1)=**20**.</span>
<span style="background-color: #fffff0;">We now choose the smallest possible odd prime number 3 as e and therefore</span>
<span style="background-color: #fffff0;">**Alice's public key is (3,33**) and Alice sends this to Bob with WhatsApp as</span>
<span style="background-color: #fffff0;">a different channel where both Alice and Bob trusts.</span>
<span style="background-color: #fffff0;">Alice than sets out the find d from **e.d = 1 mod t** equality and asks the</span>
<span style="background-color: #fffff0;">question which d multiplied by 3 and divided by 20 gives a remainder of 1?</span>
<span style="background-color: #fffff0;">This is not very hard to find, **3 x 7** **= 21** and 21 divided by 20 gives a</span>
<span style="background-color: #fffff0;">remainder of 1. </span>
<span style="background-color: #fffff0;">Therefore, **Alice's secret key is ( 7, 33 )** and she keeps this private</span>
<span style="background-color: #fffff0;">only to be used by Alice to decipher secret message coming to her with</span>
<span style="background-color: #fffff0;">her Public Key ( 3,33 )</span>
<span style="background-color: #fffff0;">Alice sends Bob a suggested coding table as follows with WhatsApp.</span>
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . , ? ! _ ( )
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Bob sends the following message to Alice:</span>
**SZZNYSZYANYDAXC,Y. MYNZXSCEALYNWIYIEYI.NYECEZYANYEIIE**
Eve intercepts SZZNYSZYANYDAXC,Y. MYNZXSCEALYNWIYIEYI.NYECEZYANYEIIE but she can not
make any sense out of this garbled text because she does not have the secret key.
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Alice converts this message according to above coding table: </span>
19 26 26 14 25 19 26 25 01 14 25 04 01 24 03 28 25 27 31 13 25 14 26 24 19 03 05 01 12 25 14 23 09 25 09 05 25 09 27 14 25 05 03 05 26 25 01 14 25 05 09 09 05
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Finally Alice deciphers each number with her secret key (7,33) using the formula :</span>
**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">a = c </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">7</span><span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> mod 33</span>**
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">like </span>
**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">a = 19 </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">7</span>**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **mod 33 = 893871739 mod 33 = 13** which corresponds to letter **M**</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">When we calculate all the numbers in the above message we will get:</span>
13 05 05 20 31 13 05 31 01 20 31 16 01 18 09 19 31 03 04 07 31 20 05 18 13 09 14 01 12 31 20 23 15 31 15 14 31 15 03 20 31 14 09 14 05 31 01 20 31 14 15 15 14
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">When we look at our coding table we obtain the following text message:</span>
**M E E T _M E_ AT_ P A R I S_ C D G_ T E R M I N A L_ T W O_ O N_ O C T_ N I N E_ A T_ N O O N**
==Demonstration Program in Liberty Basic==
[[code format="lb"]]
dim stats(11)
dim SmallPrimes(1000)
[begin]
print "Liberty Basic RSA Demonstration"
print "Loading Small Primes"
for i=1 to 1000
read x
SmallPrimes(i)=x
next
NoOfSmallPrimes=1000
print NoOfSmallPrimes;" Primes Loaded"
print"Generating Random Primes"
for i=1 to 2
t1=time$("ms")
[TryAnother]
print
print "Prime No ";i
if i=1 then x=Random(30) else x=Random(30)
iterations=0
[Loop]
iterations=iterations+1
if MillerRabin(x,7)=1 then
'print "Composite"
x=x+2
goto [Loop]
else
t2=time$("ms")
print x;" Probably Prime. Generated in ";t2-t1;" milliseconds"
end if
if p then q=x else p=x
next i
print
print "p=";dechex$(p)
[Retry]
restore
print "q=";dechex$(q)
'Common modulus N=(p)(q)
n=p*q
print "Key Length ";len(dechex$(n))*4;" bits "
print
'Euler Totient Number M=(p-1)(q-1)
m=(p-1)*(q-1)
'Choose a suitable prime E relatively prime to M
for i=1 to 12
read e
if (GCD(e,m)=1) then goto [Start]
next i
[Start]
print "Common Modulus, n=";dechex$(n)
print "Euler-Totient No, m=";dechex$(m)
print "Public Exponent, e=";dechex$(e)
d=ExtBinEuclid( e, m )
print "Secret Exponent, d=";dechex$(d)
DIM TEST(10)
DIM ENCR(10)
DIM DECR(10)
TEST(1)=TEXT2DEC("LIBERTY BASIC IS THE BEST")
TEST(2)=TEXT2DEC("WHICH BASIC CAN DO THIS ")
TEST(3)=TEXT2DEC("WITHOUT CALLING EXT DLL ?")
TEST(4)=TEXT2DEC("LB CAN DO BIG INTEGERS ! ")
TEST(5)=TEXT2DEC("UNDOCUMENTED LB FEATURE. ")
print
print "RSA ENCRYPTION DEMO"
for i=1 to 5
t1=time$("ms")
ENCR(i)=FastExp(TEST(i), e, n)
t2=time$("ms")
print TEST(i);
print " ";ENCR(i);
print " ";t2-t1;" ms"
print DEC2TEXT$( TEST(i) );" --> ";DEC2TEXT$( ENCR(i) )
print
next i
print
print ""
print
print "RSA DECRYPTION DEMO"
for i=1 to 5
t1=time$("ms")
DECR(i)=FastExp(ENCR(i), d, n)
t2=time$("ms")
print ENCR(i);
print " ";DECR(i);
print " ";t2-t1;" ms"
print DEC2TEXT$( ENCR(i) );" --> ";DEC2TEXT$( DECR(i) )
print
next i
print " "
print
print "RSA Demo Finished."
[stop]
END
Function GCD( m,n )
' Find greatest common divisor with Extend Euclidian Algorithm
' Knuth Vol 1 P.13 Algorithm E
ap =1 :b =1 :a =0 :bp =0: c =m :d =n
[StepE2]
q = int(c/d) :r = c-q*d
if r<>0 then
c=d :d=r :t=ap :ap=a :a=t-q*a :t=bp :bp=b :b=t-q*b
'print ap;" ";b;" ";a;" ";bp;" ";c;" ";d;" ";t;" ";q
goto [StepE2]
end if
GCD=a*m+b*n
'print ap;" ";b;" ";a;" ";bp;" ";c;" ";d;" ";t;" ";q
End Function 'Extended Euclidian GCD
Function ExtBinEuclid( u, v )
k=0 :t1=0 :t2=0 :t3=0
if u<v then
temp=u
u=v
v=temp
end if
while (IsEven( u ) and IsEven( v ))
k = k+1
u = int(u/2)
v = int(v/2)
wend
u1 = 1: u2 = 0: u3 =u: t1 =v: t2 =u-1: t3 =v
[Loop1]
'two labels with no code!
[Loop2]
' print "*"
if (IsEven(u3)) then
if IsOdd(u1) or IsOdd(u2) then
u1=u1+v
u2=u2+u
end if
u1=int(u1/2)
u2=int(u2/2)
u3=int(u3/2)
end if
if IsEven(t3) or (u3<t3) then
temp=u1: u1=t1: t1=temp
temp=u2: u2=t2: t2=temp
temp=u3: u3=t3: t3=temp
end if
if IsEven(u3) then
goto [Loop2]
end if
while u1<t1 OR u2<t2
u1=u1+v: u2=u2+u
wend
u1=u1-t1: u2=u2-t2: u3=u3-t3
if (t3>0) then
goto [Loop1]
end if
while u1>=v AND u2>=u
u1=ul-v: u2=u2-u
wend
ExtBinEuclid=u-u2
End Function
function IsEven( x )
if ( x MOD 2 )=0 then
IsEven=1
else
IsEven=0
end if
end function
function IsOdd( x )
if ( x MOD 2 )=0 then
IsOdd=0
else
IsOdd=1
end if
end function
Function FastExp(x, y, N)
if (y=1) then 'MOD(x,N)
FastExp=x-int(x/N)*N
goto [ExitFunction]
end if
if ( y and 1) = 0 then
dum1=y/2
dum2=y-int(y/2)*2 'MOD(y,2)
temp=FastExp(x,dum1,N)
z=temp*temp
FastExp=z-int(z/N)*N 'MOD(temp*temp,N)
goto [ExitFunction]
else
dum1=y-1
dum1=dum1/2
temp=FastExp(x,dum1,N)
dum2=temp*temp
temp=dum2-int(dum2/N)*N 'MOD(dum2,N)
z=temp*x
FastExp=z-int(z/N)*N 'MOD(temp*x,N)
goto [ExitFunction]
end if
[ExitFunction]
end function
Function PowMod( a, n, m)
r = 1
while (n > 0)
if (n AND 1) then '/* test lowest bit */
r = MulMod(r, a, m) '/* multiply (mod m) */
end if
a = MulMod(a, a, m) '/* square */
n = int(n/2) '/* divided by 2 */
wend
PowMod=r
End Function
Function MulMod( a, b, m)
if (m = 0) then
MulMod=a * b ' /* (mod 0) */
Else
r = 0
while (a > 0)
if (a AND 1) then ' /* test lowest bit */
r= r+b
if (r > m) then
r = (r MOD m) ' /* add (mod m) */
end if
end if
a = int(a/2) ' /* divided by 2 */
b = b*2
if (b > m) then
b = (b MOD m) ' /* times 2 (mod m) */
end if
wend
MulMod=r
End If
End Function
Function rand( x )
x=x*5
x=x+1
rand=x
End Function
Function MillerRabin(n,b)
'print "Miller Rabin"
't1=time$("ms")
if IsEven(n) then
MillerRabin=1
goto [ExtFn]
end if
i=0
[Loop]
i=i+1
if i>1000 then goto [Continue]
if ( n MOD SmallPrimes(i) )=0 then
MillerRabin=1
goto [ExtFn]
end if
goto [Loop]
[Continue]
if GCD(n,b)>1 then
MillerRabin=1
goto [ExtFn]
end if
q=n-1
t=0
while (int(q) AND 1 )=0
t=t+1
q=int(q/2)
wend
r=FastExp(b, q, n)
if ( r <> 1 ) then
e=0
while ( e < (t-1) )
if ( r <> (n-1) ) then
r=FastExp(r, r, n)
else
Exit While
end if
e=e+1
wend
[ExitLoop]
end if
if ( (r=1) OR (r=(n-1)) ) then
MillerRabin=0
else
MillerRabin=1
end if
[ExtFn]
End Function
Function Random( Digits )
' x=INT(RND(1)*TIME$("ms")*9912812828239112219) * INT(RND(1)*9912166437771297131373) *
' INT(RND(1)*71777126181142123) * INT(RND(1)*7119119672435637981) *
' INT(RND(1)*991216643912127789) * INT(RND(1)*79126181142123) *
' INT(RND(1)*711911128376332417) * INT(RND(1)*991216643123129) *
' INT(RND(1)*79126181142123) * INT(RND(1)*6661912727312317)
' Random=INT(VAL(RIGHT$(STR$(x,1)))
x=INT(RND(1)*TIME$("ms")*9912812828239112219) * INT(RND(1)*9912166437771297131373) *_
INT(RND(1)*71777126181142123) * INT(RND(1)*7119119672435637981) *_
INT(RND(1)*991216643912127789) * INT(RND(1)*79126181142123) *_
INT(RND(1)*711911128376332417)
x=x*x+x+41
y$=mid$(str$(x),INT(rnd(1)*30+1),Digits )
ldg=val(right$(y$,1))
z=0
if ldg=0 then z=1
if ldg=2 then z=1
if ldg=4 then z=1
if ldg=6 then z=1
if ldg=8 then z=1
Random=val(y$)+z
End Function
FUNCTION TEXT2DEC( x$ )
a$=UPPER$(x$)
y$=""
FOR i=1 TO LEN(a$)
y$=y$+STR$(ASC(MID$(a$,i,1)))
NEXT
TEXT2DEC=VAL(y$)
END FUNCTION
FUNCTION DEC2TEXT$( n )
a$=STR$(n)
y$=""
FOR i=1 TO LEN(a$)-1 STEP 2
m=VAL(MID$(a$,i,2))
if m>30 and m<99 then y$=y$+CHR$(m) else y$=y$+"."
NEXT
DEC2TEXT$=y$
END FUNCTION
data 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
data 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
data 73, 79, 83, 89, 97, 101, 103, 107, 109, 113
data 127, 131, 137, 139, 149, 151, 157, 163, 167, 173
data 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
data 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
data 283, 293, 307, 311, 313, 317, 331, 337, 347, 349
data 353, 359, 367, 373, 379, 383, 389, 397, 401, 409
data 419, 421, 431, 433, 439, 443, 449, 457, 461, 463
data 467, 479, 487, 491, 499, 503, 509, 521, 523, 541
data 547, 557, 563, 569, 571, 577, 587, 593, 599, 601
data 607, 613, 617, 619, 631, 641, 643, 647, 653, 659
data 661, 673, 677, 683, 691, 701, 709, 719, 727, 733
data 739, 743, 751, 757, 761, 769, 773, 787, 797, 809
data 811, 821, 823, 827, 829, 839, 853, 857, 859, 863
data 877, 881, 883, 887, 907, 911, 919, 929, 937, 941
data 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013
data 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069
data 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151
data 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223
data 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291
data 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373
data 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451
data 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511
data 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583
data 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657
data 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733
data 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811
data 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889
data 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987
data 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053
data 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129
data 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213
data 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287
data 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357
data 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423
data 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531
data 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617
data 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687
data 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741
data 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819
data 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903
data 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999
data 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079
data 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181
data 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257
data 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331
data 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413
data 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511
data 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571
data 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643
data 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727
data 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821
data 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907
data 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989
data 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057
data 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139
data 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231
data 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297
data 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409
data 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493
data 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583
data 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657
data 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751
data 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831
data 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937
data 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003
data 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087
data 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179
data 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279
data 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387
data 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443
data 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521
data 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639
data 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693
data 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791
data 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857
data 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939
data 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053
data 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133
data 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221
data 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301
data 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367
data 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473
data 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571
data 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673
data 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761
data 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833
data 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917
data 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997
data 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103
data 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207
data 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297
data 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411
data 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499
data 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561
data 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643
data 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723
data 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829
data 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919
[[code]]
[[toc|flat]]