
Liberty BASIC Programmer's Encyc

Bitmaps in the Device Context
-

 Alyce

SelectObject | hBmp | CreateCompatibleBmp | DeleteObject | Demo | Transferring Bits Some text below is
copied from the Microsoft Developers Network Library.

For an eBook or printed book on using the API with Liberty BASIC, see:
APIs for Liberty BASIC

SelectObject
In earlier lessons we discussed the loading of bitmaps. We also discussed device contexts, both for a
window and in memory.

Memory device contexts contain a default, monochrome bitmaps that is 1 pixel wide and 1 pixel high. We
can select another bitmap into a memory device context with SelectObject. It looks like this:

 CallDLL #gdi32,"SelectObject",_
 memoryDC as uLong,_ 'handle to memory device context
 hObject as uLong,_ 'handle of bitmap
 oldObject as uLong
'returns handle to previously selected object

The bitmap object can be a bitmap that was loaded into memory with Liberty BASIC's LOADBMP
command, or with the API call to LoadImageA.

hBmp
We see that the SelectObject function requires a handle to the object to be selected. If we used the
LoadImageA API call to load the image, we already have the handle. If we used Liberty BASIC's ability to
load a bitmap and give it a "name" we must use the HBMP() function to retrieve the Windows handle to
the bitmap. It looks like this:

loadbmp "example", "filename.bmp"
hBitmap = hbmp("example")

 page 1 / 4

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

CreateCompatibleBmp
It is possible to create a bitmap in memory. This is done with CreateCompatibleBitmap. It is important to
remember that the memory bitmap must be created to be compatible with a display or window device
context, not with a memory device context.

calldll #gdi32, "CreateCompatibleBitmap",_
 hDC AS ulong,_ 'window DC, NOT memory DC
 nWidth AS long,_ 'width of created bitmap
 nHeight AS long,_ 'height of created bitmap
 handleBMP AS ulong 'returns handle if successful

The memory bitmap must be selected into the device context that was created in memory with
CreateCompatibleDC. All graphics commands to the memory device context will affect the memory
bitmap that is currently selected into it.

CallDll #gdi32, "SelectObject",_
 hdcMem as ulong,_ 'memory device context
 handleBMP as ulong,_ 'handle of memory bitmap
 oldBmp as ulong 'returns handle of previous object

A program can have many memory bitmaps. Each device context can hold only one memory bitmap at a
time. A bitmap that is selected into a memory device context replaces the previous bitmap in that context.
The handle to the previous bitmap is returned by the SelectObject call.

DeleteObject
When a memory bitmap is no longer needed, delete it with DeleteObject:

calldll #gdi32,"DeleteObject",_
 handleBMP as ulong,_ 'handle of memory bitmap
 r as long 'nonzero if successfull

Do not attempt to delete an object that is currently selected into a device context. Retain the handle of the
original, default bmp from the DC and use SelectObject to select it back into the DC. When the memory
bmp is not longer selected into a device context it can be deleted.

 page 2 / 4

Liberty BASIC Programmer's Encyc

 'select default bmp back into DC
 CallDLL #gdi32,"SelectObject",_
 hMemDC as uLong,_ 'memory DC
 oldBmp as uLong,_ 'handle of original, default bmp
 handle as uLong 'returns previously selected bitmap

Demo
The following demonstration program does not display any graphics. It is presented as a framework for
working with graphics in memory. Further lessons will build on this framework.

nomainwin
winWide=700:winHigh=500
WindowWidth=winWide+50:WindowHeight=winHigh+50
UpperLeftX=1:UpperLeftY=1

graphicbox #1.g, 0,0,winWide,winHigh
open "GDI Demo" for window as #1
 #1 "trapclose [quit]"
 #1.g "down"

 h=hwnd(#1.g) 'graphicbox handle

 'get device context for window:
 calldll #user32, "GetDC",_
 h as ulong,_ 'graphicbox handle
 hdc as ulong 'returns handle to device context

 calldll #gdi32, "CreateCompatibleDC",_
 hdc as ulong,_ 'graphicbox DC
 hMemDC as ulong 'memory DC

 nWidth=100 : nHeight=200
 calldll #gdi32, "CreateCompatibleBitmap",_
 hdc AS ulong,_ 'window DC, NOT memory DC
 nWidth AS long,_ 'width of created bitmap
 nHeight AS long,_ 'height of created bitmap
 handleBmp AS ulong 'returns handle if successful

 CallDLL #gdi32,"SelectObject",_
 hMemDC as uLong,_ 'memory DC
 handleBmp as uLong,_ 'handle of bmp
 oldBmp as uLong 'returns previously selected bitmap

 page 3 / 4

Liberty BASIC Programmer's Encyc

wait

[quit]
 'select default bmp back into DC
 CallDLL #gdi32,"SelectObject",_
 hMemDC as uLong,_ 'memory DC
 oldBmp as uLong,_ 'handle of original, default bmp
 handle as uLong 'returns previously selected bitmap

 CallDLL #gdi32,"DeleteObject",_
 handleBmp as uLong,_ 'handle of bmp
 r As long

 calldll #gdi32, "DeleteDC",_
 hMemDC as ulong,_ 'DC to delete
 re as long 'nonzero=success

 calldll #user32, "ReleaseDC",_
 h as ulong,_ 'window handle
 hdc as ulong,_ 'device context
 ret as long

 close #1:end

Transferring Bits
We now know how to create a device context in memory. It functions as a canvas for graphics. It contains
a memory bitmap. This bitmap can be displayed on the program window with GDI API calls. We'll discuss
that subject in the next lesson.

Transferring Bits

GDI Tutorials Home

Powered by TCPDF (www.tcpdf.org)

 page 4 / 4

/BitBlt
/GDI
http://www.tcpdf.org

	BitmapObject

