Liberty BASIC Programmer's Encyc

Creating a Shell

Painting the Desktop

by Alyce Watson - http://alycesrestaurant.com/

Alyce

Table of Contents

Creating a Shell

Painting the Desktop

What is a Shell?

Setting Up a Desktop

Painting the Desktop

Adding Application Icons

Remembering the User's Choices

Running Programs from the Shell

Enchancements

Making Code Easy to Modify

DEMO

What is a Shell?

A shell is an application that manages the user's applications and documents. It is not the same as an
Operating System. A shell runs on top of an operating system. We can create a shell for Windows in
Liberty BASIC. We'll paint a desktop over the existing desktop and allow the user to add icons to it for

their applications.

page 1 /11

http://alycesrestaurant.com/
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

Setting Up a Desktop

We'll use a window of style "window_popup" to cover the desktop. This style does not have a titlebar, so
it's a great choice for a desktop replacement. We'll make it the DisplayWidth and DisplayHeight
dimensions, so it covers the entire existing desktop. We'll include a graphicbox that covers the entire client
area of the window. The graphicbox allows us to capture mouse clicks and to flush the graphics to make
them stick. We'll add a button to the lower left corner of the desktop that allows the user to exit our shell.
That's the default location for the Windows start button, so the user will expect to find it there. The user
could exit our shell by pressing and holding the Alt button, then pressing F-4, but it's more polished to
provide an easy way to exit an application.

W ndowW dt h=Di spl ayW dt h: W ndowHei ght =Di spl ayHei ght

gr aphi cbox #desk.g, -1, -1, D splayWdth+2, D splayHei ght+2
button #desk.exit, "Exit", DoExit, UL, 4, D splayHeight-30, 56, 28

open "My Desktop Shell"™ for w ndow _popup as #desk

Painting the Desktop

Windows provides an API function called "PaintDesktop". It paints the desktop image onto the Device
Context specified. The desktop image includes the user's selected background color and image file. It does
not include the icons displayed on the user's desktop. The function is provided to allow people to create
their own Windows shell programs.

For the Device Context, we will "GetDC" for the grahicbox at the start of the program and "ReleaseDC"
when the program ends. Those functions look like this:

Cal | DLL #user32, "GetDC', _
hwhd as ulLong, ' graphi cbox handl e
hDC as ulLong ‘returns handl e to Device Context

Cal | DLL#user 32, "Rel easeDC", _
hwhd as ulLong, ' graphi cbox handl e

hDC as uLong, _ 'handl e to Device Context
result As Long

Once we have the DC of the graphicbox, it is super-simple to paint the user's desktop image onto it.

cal I dl'l #user32, "PaintDesktop",

page 2/ 11

Liberty BASIC Programmer's Encyc

hDC as ul ong, _ "handl e of graphi cbox devi ce context
re as |long 'nonzero = success

Any time we make a change to our desktop's appearance, we'll flush it with "GetBmp", then "DrawBmp"
then "Flush". Because we are giving our segments a name when we flush them, we can easily delete each
segment when we are ready to flush a new one. This conserves memory. Each flush operation consumes
memory, but that memory can be released by deleting the flushed segments with "delsegment".

Sub DoFl ush
#desk. g "del segnent fl ushMe"
#desk. g "getbnp desk O O "; Di splayWdth;" "; D spl ayHei ght
#desk. g "drawbnp desk 0 O; flush flushMe"
end sub

Adding Application Icons

We'll extract icons from the applications the user chooses to place on his desktop with "ExtractIcon". We'll
then draw them with "Drawlcon". These functions are explained in issue 134 of The Liberty BASIC
Newsletter. We've set up a double dimensioned array to hold information about each application the user
adds to his desktop.

"apps$(i, 1) = filenanme of exe
"apps$(i,2) = x location on desktop
"apps$(i,3) = y location on desktop
"apps$(i,4) = icon handle

We set up event handlers for mouse events on the desktop. When the user clicks the right mouse button,
we allow him to add an icon to his desktop. He is first presented with a filedialog to select the application.
When he has done this, we add the information about this application to our "apps$()" array. The xy
location on the desktop are determined by checking the applications that are already in the array and
incrementing the values accordingly. We've chosen to add icons in a row across the top of the desktop. We
check to see if the width of the desktop has been reached, and if it has, we drop down to the next row to
add the new icon. We extract the icon, draw it on the desktop, and flush the new image. Because we've put
the information into an array, it is very easy to iterate through the array, looking for the first empty index,
and filling that index with information about the new application being added by the user.

Sub AddApp handl e$, nx, ny
for index = 1 to appMax
if apps$(index,1) ="" then
filedialog "Add App", "*.exe", exe$

page 3/ 11

Liberty BASIC Programmer's Encyc

if exe$ <> "" then
apps$(index, 1) = exe$
newX = val (apps$(i ndex-1,2)) + gridwWdth
"next colum in this row
newY = val (apps$(i ndex-1,3)) 'use sanme row
if newX > DisplayWdth - gridHei ght then

newxX = gridWdth ' begi nni ng of new row
newY = newY + gridHei ght 'nobve to next row

end if

apps$(index, 2) = str3$(newx)

apps$(i ndex, 3) = str$(newy)

hl con = Extract| con(hwnd(#desk. g), apps$(index, 1))

apps$(i ndex, 4) = str$(hlcon)

"draw i con on desktop at designated | ocation

result = Drawl con(hDC, val (apps$(i ndex, 4)), val(
apps$(i ndex, 2)), val (apps$(index, 3)))

end if
exit for
end if

next
cal | DoFl ush
if index = appMax then '"all slots are filled
notice "All slots are filled. Cannot add nore apps."”
end if
end sub

Remembering the User's Choices

We'll use an API initialization file to remember and retrieve the user's choices. The functions to do this are
explained in detail in issue 143 of the Liberty BASIC Newsletter. When the program closes, we write the
information to the ini file by iterating through the apps$() array. The routine is as follows.

Sub Witelnilnfo

for i =1 to appMax
if apps$(i,1) = "" then exit for
call WitelniFile "My Desktop Shell", "appNane"+str$(i),
apps$(i, 1), "mydesktopshell.ini"
call WitelniFile "My Desktop Shell", "appX'+str$(i),
apps$(i, 2), "mydesktopshell.ini"
call WitelniFile "My Desktop Shell", "appY"+str$(i),
apps$(i, 3), "mydesktopshell.ini"
next
end sub

Each time the program opens, we'll call a routine that reads the ini file, then displays the user's selections

page 4/ 11

Liberty BASIC Programmer's Encyc

on the desktop. It places the information into our apps$() array as it is read from the ini file.

Sub Getlnilnfo

for i = 1 to appMax
exe$ = GetlniFile$("My Desktop Shell", "appNanme"+str$(i),
"none", "nydeskt opshel |l .ini")
if exe$ = "none" then exit for
appX$ = CGetlni File$("My Desktop Shell", "appX'+str$(i),"0",
"nydeskt opshel | .ini")
appY¥$ = CGetlniFile$("My Desktop Shell", "appY'+str$(i),"0",

"nydeskt opshel | .ini")
apps$(i,1l) = exe$ "full path to app exe
apps$(i,2) = appX$ 'x location on desktop of app icon
apps$(i, 3) appY$ 'y location on desktop of app icon
‘get handl e of icon extracted from exe:
hl con = Extractl con(hwnd(#desk.g), apps$(i,1))
apps$(i,4) = str$(hlcon)
"draw i con on desktop at designated |ocation
result = Drawl con(hDC, val (apps$(i,4)), val (apps$(i, 2)),
val (apps$(i,3)))

next
cal |l DoFl ush
end sub

Running Programs from the Shell

We set up a left button double-click event handler in the graphicbox. When the user double-clicks the left
mouse button, we check to see if the mouse pointer is on one of the desktop icons. If it is, we use the "run"
command to run the application. For more on using the "run" command, see issue 114 of The Liberty
BASIC Newsletter.

To determine if the mouse is clicking on one of the desktop icons, we iterate through the array, checking
the xy value of each icon against the MouseX and MouseY value. If the mouse pointer X value is at least as
large as an icon's X location, but no larger than the X location plus the gridWidth, then we do a similar
check for the Y location of that icon compared to the MouseY location. If they match, we run the
application associated with that icon.

Sub RunApp handl e$, nmx, ny
print "nx is ";nx

print "ny is ";ny

for i =1 to appMax
"if apps$(i,1l) = "" then exit for
x = val (apps$(i, 2))
y = val (apps$(i, 3))

page 5/ 11

Liberty BASIC Programmer's Encyc

print "Xy is ";Xx; Y
if (mx>x) and (nmx<x+gridWdth) then
if (nmx>y) and (ny<y+gridHei ght) then
run apps$(i, 1)

exit for
end if
end if
next
end sub
Enchancements

The demo program included at the end of this article works fine, but it would benefit from some additional
features. Feel free to modify the code to create your own shell program! You might want to check issue
137 of The Liberty BASIC Newsletter for information on "Running Control Panet Applets." You might
also consider some of these enhancements:

' possi bl e enhancenent s:

all ow user to renobve apps

al l ow user to rearrange icons on desktop

add | abel s bel ow icons (increase gridWdth val ue)

make text for |abels have transparent background

allow user to create customfolders on this desktop

' if noiconis extracted, use a default icon

all ow user to use customicons, instead of icon extracted from exe
' enhance exit button with choices, |ike Wndows start button

create custom taskbar

Making Code Easy to Modify

We've used global variables for some values, so that they are visible inside subs and functions. We've set
up variables to hold certain information, so that the code can be modified easily by changing the values of
these variables at the top of the code. This allows us to make a single change, instead of going through the
entire program code to change many instances of a value. One such variable is called "gridWidth". It
contains the value we use to locate the icons in the X direction. It is set to 40. If you want to place the icons
closer together, make this number smaller. If you want them further apart, make the number larger. Don't
make it smaller than 32, which is the default width for icons, or the icons will overlap one another.

DEMO

' Deskt op Shel |l Deno
"if you use this code,
' pl ease credit Alyce Watson, http://alycesrestaurant.com

page 6/ 11

Liberty BASIC Programmer's Encyc

"note that this deno allows user to add apps to desktop

"note that this denb does not allow user to renove apps or rearrange d
eskt op

' possi bl e enhancenent s:

all ow user to renobve apps

al l ow user to rearrange icons on desktop

add | abel s bel ow icons (increase gridWdth val ue)

make text for |abels have transparent background

all ow user to create customfolders on this desktop

if noiconis extracted, use a default icon

all ow user to use customicons, instead of icon extracted from exe
enhance exit button with choices, |ike Wndows start button

create custom taskbar

nomai Nw n

gl obal hDC, gridwWdth, gridHeight, appMax
gridWdth = 40 : gridHeight = 40

appMax = 50 ' maxi mum nunber of apps on desktop

di m apps$(50,4) 'arrays are gl obal by default
redi m apps$(appMax, 4)

"apps$(i, 1) = filename of exe

“apps$(i, 2) x location on desktop
"apps$(i,3) =y location on desktop

“apps$(i, 4) i con handl e

W ndowWw dt h=Di spl ayW dt h: W ndowHei ght =Di spl ayHei ght

gr aphi cbox #desk.g, -1, -1, DisplayWdth+2, D splayHeight+2
button #desk.exit, "Exit", DoExit, UL, 4, D splayHeight-30, 56, 28

open "My Desktop Shell"™ for w ndow _popup as #desk
#desk "trapclose Qit"
#desk. g "down; setfocus”
#desk. g "when ri ghtButtonUp AddApp"
#desk. g "when | eftButtonDoubl e RunApp"

hDC = Get DC(hwnd(#desk. g))

cal | Pai nt Deskt op hDC

call Getlnilnfo 'get and draw user icons, flush desktop
wai t

Sub AddApp handl e$, nmx, ny
for index = 1 to appMax
i f apps$(index,1) = "" then
filedialog "Add App", "*.exe", exe$

page 7/ 11

Liberty BASIC Programmer's Encyc

if exe$ <> "" then
apps$(index, 1) = exe$
newX = val (apps$(i ndex-1,2)) + gridWdth 'next col um
in this row
newY = val (apps$(index-1,3)) 'use same row
if newX > DisplayWdth - gridHei ght then

newxX = gridwWdth ' begi nni ng of new row
newY = newY + gridHei ght 'nobve to next row
end if

apps$(i ndex, 2) = str3$(newx)

apps$(i ndex, 3) = str$(newy)

hl con = Extract| con(hwnd(#desk. g), apps$(index, 1))

apps$(i ndex, 4) = str$(hlcon)

"draw i con on desktop at designated | ocation

result = Drawl con(hDC, val (apps$(index, 4)), val (apps$(
i ndex, 2)), val (apps$(index, 3)))

end if
exit for
end if

next
cal | DoFl ush
if index = appMax then '"all slots are filled
notice "All slots are filled. Cannot add nore apps."”
end if
end sub

Sub RunApp handl e$, nmx, ny

for i = 1 to appMax
x = val (apps$(i, 2))
y = val (apps$(i, 3))
print "xy is ";x;" ";y
if (mx>x) and (nmx<x+gridWdth) then
if (nmx>y) and (ny<y+gridHei ght) then
run apps$(i, 1)
exit for
end if
end if
next
end sub
Sub Getlnilnfo
for i = 1 to appMax
exe$ = GetlniFile$("My Desktop Shell", "appNane"+str$(i), "none
", "nydeskt opshell.ini")
if exe$ = "none" then exit for
appX$ = CetlniFile$("My Desktop Shell", "appX'+str$(i),"0","ny

page 8/ 11

Liberty BASIC Programmer's Encyc

desktopshel | .ini ")

appY$ = CetlniFile$("My Desktop Shell", "appY'+str$(i),"0","ny
desktopshel | .ini ™)

apps$(i, 1) = exe$ 'full path to app exe

apps$(i,2) = appX$ 'x location on desktop of app icon

apps$(i,3) = appY$ 'y location on desktop of app icon

"get handle of icon extracted from exe:

hl con = Extract! con(hwnd(#desk.g), apps$(i, 1))

apps$(i,4) = str$(hlcon)

"draw i con on desktop at designated | ocation

result = Drawl con(hDC, val (apps$(i,4)), val (apps$(i,2)), val(a

pps$(i,3)))

Sub

2),

3),

Sub

Sub

next
call DoFl ush
end sub

Witelnilnfo

for i = 1 to appMax
if apps$(i,1) = "" then exit for
call WitelniFile "My Desktop Shell", "appName"+str$(i), apps$
(i,1), "nydesktopshell.ini"
call WitelniFile "My Desktop Shell", "appX'+str$(i), apps$(i,
"nmydeskt opshell .ini"
call WitelniFile "My Desktop Shell", "appY'+str$(i), apps$(i,
"nmydeskt opshell .ini"
next
end sub
DoFl ush
#desk. g "del segnent fl ushMe"
#desk. g "getbnp desk O O "; Di splayWdth;" "; D spl ayHei ght
#desk. g "drawbnp desk 0 O; flush flushMe"
end sub
Qi t handl e$

Sub

cal |l Rel easeDC hwnd(#desk.g), hDC
call Witelnilnfo
for i = 1 to appMax
if apps$(i,1l) = "" then exit for
hl con = val (apps$(i,4))
cal ldl | #user32, "Destroylcon", hlcon as ulong, re as |ong
next
cl ose #handl e$: end
end sub

DoExit handl e$

page 9/ 11

Liberty BASIC Programmer's Encyc

call Quit "#desk"
end sub

" %% *x***x*,****x**%

" APl VWRAPPERS
" api wappers are copied fromhttp://al ycesrestaurant.conf workshop. ht
m

' % *x***k*****x**%

sub Pai nt Deskt op hwndDC
cal ldl | #user32, "PaintDesktop”, hwndDC as ul ong, _
re as |long
end sub

Sub WitelniFile | pAppNanme$, | pKeyNane$, | pString$, |pFileNane$
| pFi | eNane$=Def aul t Di r $+"\ "+l pFi | eNane$
Cal | DLL #kernel 32, "WitePrivateProfileStringA",

| pAppName$ As ptr, _ 'section nane

| pKeyNane$ As ptr, _ 'key nane

| pString$ As ptr, _ ' key val ue

| pFil eName$ As ptr, _ 'ini filenane

result As |ong ''nonzero = success
end sub

Function Getlni Fil e$(l pAppNanme$, | pKeyNane$, | pDef aul t $, | pFi | eNane$)
| pFi | eNane$=Def aul t Di r $+"\ "+l pFi | eNane$
nSi ze=100
| pRet ur nedSt ri ng$=Space$(nSi ze) +Chr $(0)
Cal | DLL #kernel 32, "GetPrivateProfileStringA",
| pAppNanme$ As ptr, _'section nane
| pKeyNanme$ As ptr, _'key nane

| pDefault$ As ptr, _'default string returned if there is no en
try

| pRet urnedString$ As ptr, _ 'destination buffer

nSi ze As |ong, _ 'size of destination buffer

| pFi | eName$ As ptr, _ “ini filenane

result As ul ong "nunber of characters copied to buffer

Getlni Fil e$=Left$(l pReturnedString$, result)
end function

Function Extractlcon(hW file$)
hl nst =Get W ndowLong(hW _ GAL_HI NSTANCE)
Cal | DLL #shel |l 32, "ExtractlconA", hlnst as ulLong, _
file$ As Ptr, 0 As Long, Extractlcon as ulLong
End Function

page 10/ 11

Liberty BASIC Programmer's Encyc

Function Draw con(hdc, hl con, x, y)

Cal | DLL #user 32, "Draw con", hdc as uLong, x As Long, _

y As Long, hlcon as uLong, Drawl con As Long
End Function

Function Get WndowLong(hW type)
Cal | DLL #user 32, "Get WndowLongA", hWas ulLong, _
type As Long, Get WndowLong As Long
End Function

Function Get DC(hwhd)

Cal | DLL #user 32, "GetDC', hwhd as uLong, Get DC as ulLong

End Function

Sub Rel easeDC hwhd, hDC
Cal | DLL#user 32, "Rel easeDC', hwhd as ulLong, _
hDC as ulLong,result As Long
End Sub

Table of Contents

Creating a Shell

Painting the Desktop

What is a Shell?

Setting Up a Desktop

Painting the Desktop

Adding Application Icons
Remembering the User's Choices
Running Programs from the Shell

Enchancements

Making Code Easy to Modify

DEMO

page 11 /11

http://www.tcpdf.org

	DesktopShell

