
Liberty BASIC Programmer's Encyc

Creating a Shell

Painting the Desktop

by Alyce Watson - http://alycesrestaurant.com/
-

 Alyce

Table of Contents
Creating a Shell

Painting the Desktop

What is a Shell?

Setting Up a Desktop

Painting the Desktop

Adding Application Icons

Remembering the User's Choices

Running Programs from the Shell

Enchancements

Making Code Easy to Modify

DEMO

What is a Shell?

A shell is an application that manages the user's applications and documents. It is not the same as an
Operating System. A shell runs on top of an operating system. We can create a shell for Windows in
Liberty BASIC. We'll paint a desktop over the existing desktop and allow the user to add icons to it for
their applications.

 page 1 / 11

http://alycesrestaurant.com/
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

Setting Up a Desktop

We'll use a window of style "window_popup" to cover the desktop. This style does not have a titlebar, so
it's a great choice for a desktop replacement. We'll make it the DisplayWidth and DisplayHeight
dimensions, so it covers the entire existing desktop. We'll include a graphicbox that covers the entire client
area of the window. The graphicbox allows us to capture mouse clicks and to flush the graphics to make
them stick. We'll add a button to the lower left corner of the desktop that allows the user to exit our shell.
That's the default location for the Windows start button, so the user will expect to find it there. The user
could exit our shell by pressing and holding the Alt button, then pressing F-4, but it's more polished to
provide an easy way to exit an application.

WindowWidth=DisplayWidth:WindowHeight=DisplayHeight

graphicbox #desk.g, -1, -1, DisplayWidth+2, DisplayHeight+2
button #desk.exit, "Exit", DoExit, UL, 4, DisplayHeight-30, 56, 28

open "My Desktop Shell" for window_popup as #desk

Painting the Desktop

Windows provides an API function called "PaintDesktop". It paints the desktop image onto the Device
Context specified. The desktop image includes the user's selected background color and image file. It does
not include the icons displayed on the user's desktop. The function is provided to allow people to create
their own Windows shell programs.

For the Device Context, we will "GetDC" for the grahicbox at the start of the program and "ReleaseDC"
when the program ends. Those functions look like this:

 CallDLL #user32, "GetDC",_
 hWnd as uLong,_ 'graphicbox handle
 hDC as uLong 'returns handle to Device Context

 CallDLL#user32,"ReleaseDC",_
 hWnd as uLong,_ 'graphicbox handle
 hDC as uLong,_ 'handle to Device Context
 result As Long

Once we have the DC of the graphicbox, it is super-simple to paint the user's desktop image onto it.

 calldll #user32, "PaintDesktop",_

 page 2 / 11

Liberty BASIC Programmer's Encyc

 hDC as ulong,_ 'handle of graphicbox device context
 re as long 'nonzero = success

Any time we make a change to our desktop's appearance, we'll flush it with "GetBmp", then "DrawBmp"
then "Flush". Because we are giving our segments a name when we flush them, we can easily delete each
segment when we are ready to flush a new one. This conserves memory. Each flush operation consumes
memory, but that memory can be released by deleting the flushed segments with "delsegment".

Sub DoFlush
 #desk.g "delsegment flushMe"
 #desk.g "getbmp desk 0 0 ";DisplayWidth;" ";DisplayHeight
 #desk.g "drawbmp desk 0 0; flush flushMe"
 end sub

Adding Application Icons

We'll extract icons from the applications the user chooses to place on his desktop with "ExtractIcon". We'll
then draw them with "DrawIcon". These functions are explained in issue 134 of The Liberty BASIC
Newsletter. We've set up a double dimensioned array to hold information about each application the user
adds to his desktop.

'apps$(i,1) = filename of exe
'apps$(i,2) = x location on desktop
'apps$(i,3) = y location on desktop
'apps$(i,4) = icon handle

We set up event handlers for mouse events on the desktop. When the user clicks the right mouse button,
we allow him to add an icon to his desktop. He is first presented with a filedialog to select the application.
When he has done this, we add the information about this application to our "apps$()" array. The xy
location on the desktop are determined by checking the applications that are already in the array and
incrementing the values accordingly. We've chosen to add icons in a row across the top of the desktop. We
check to see if the width of the desktop has been reached, and if it has, we drop down to the next row to
add the new icon. We extract the icon, draw it on the desktop, and flush the new image. Because we've put
the information into an array, it is very easy to iterate through the array, looking for the first empty index,
and filling that index with information about the new application being added by the user.

Sub AddApp handle$, mx, my
 for index = 1 to appMax
 if apps$(index,1) = "" then
 filedialog "Add App", "*.exe", exe$

 page 3 / 11

Liberty BASIC Programmer's Encyc

 if exe$ <> "" then
 apps$(index,1) = exe$
 newX = val(apps$(index-1,2)) + gridWidth
'next column in this row
 newY = val(apps$(index-1,3)) 'use same row
 if newX > DisplayWidth - gridHeight then
 newX = gridWidth 'beginning of new row
 newY = newY + gridHeight 'move to next row
 end if
 apps$(index,2) = str$(newX)
 apps$(index,3) = str$(newY)
 hIcon = ExtractIcon(hwnd(#desk.g), apps$(index,1))
 apps$(index,4) = str$(hIcon)
 'draw icon on desktop at designated location
 result = DrawIcon(hDC, val(apps$(index,4)), val(
apps$(index,2)), val(apps$(index,3)))
 end if
 exit for
 end if
 next
 call DoFlush
 if index = appMax then 'all slots are filled
 notice "All slots are filled. Cannot add more apps."
 end if
 end sub

Remembering the User's Choices

We'll use an API initialization file to remember and retrieve the user's choices. The functions to do this are
explained in detail in issue 143 of the Liberty BASIC Newsletter. When the program closes, we write the
information to the ini file by iterating through the apps$() array. The routine is as follows.

Sub WriteIniInfo
 for i = 1 to appMax
 if apps$(i,1) = "" then exit for
 call WriteIniFile "My Desktop Shell", "appName"+str$(i),
 apps$(i,1), "mydesktopshell.ini"
 call WriteIniFile "My Desktop Shell", "appX"+str$(i),
 apps$(i,2), "mydesktopshell.ini"
 call WriteIniFile "My Desktop Shell", "appY"+str$(i),
 apps$(i,3), "mydesktopshell.ini"
 next
 end sub

Each time the program opens, we'll call a routine that reads the ini file, then displays the user's selections

 page 4 / 11

Liberty BASIC Programmer's Encyc

on the desktop. It places the information into our apps$() array as it is read from the ini file.

Sub GetIniInfo
 for i = 1 to appMax
 exe$ = GetIniFile$("My Desktop Shell", "appName"+str$(i),
"none","mydesktopshell.ini")
 if exe$ = "none" then exit for
 appX$ = GetIniFile$("My Desktop Shell", "appX"+str$(i),"0",
"mydesktopshell.ini")
 appY$ = GetIniFile$("My Desktop Shell", "appY"+str$(i),"0",
"mydesktopshell.ini")
 apps$(i,1) = exe$ 'full path to app exe
 apps$(i,2) = appX$ 'x location on desktop of app icon
 apps$(i,3) = appY$ 'y location on desktop of app icon
 'get handle of icon extracted from exe:
 hIcon = ExtractIcon(hwnd(#desk.g), apps$(i,1))
 apps$(i,4) = str$(hIcon)
 'draw icon on desktop at designated location
 result = DrawIcon(hDC, val(apps$(i,4)), val(apps$(i,2)),
val(apps$(i,3)))
 next
 call DoFlush
 end sub

Running Programs from the Shell

We set up a left button double-click event handler in the graphicbox. When the user double-clicks the left
mouse button, we check to see if the mouse pointer is on one of the desktop icons. If it is, we use the "run"
command to run the application. For more on using the "run" command, see issue 114 of The Liberty
BASIC Newsletter.

To determine if the mouse is clicking on one of the desktop icons, we iterate through the array, checking
the xy value of each icon against the MouseX and MouseY value. If the mouse pointer X value is at least as
large as an icon's X location, but no larger than the X location plus the gridWidth, then we do a similar
check for the Y location of that icon compared to the MouseY location. If they match, we run the
application associated with that icon.

Sub RunApp handle$, mx, my
 print "mx is ";mx
 print "my is ";my
 for i = 1 to appMax
 'if apps$(i,1) = "" then exit for
 x = val(apps$(i,2))
 y = val(apps$(i,3))

 page 5 / 11

Liberty BASIC Programmer's Encyc

 print "xy is ";x;" ";y
 if (mx>x) and (mx<x+gridWidth) then
 if (mx>y) and (my<y+gridHeight) then
 run apps$(i,1)
 exit for
 end if
 end if
 next
 end sub

Enchancements

The demo program included at the end of this article works fine, but it would benefit from some additional
features. Feel free to modify the code to create your own shell program! You might want to check issue
137 of The Liberty BASIC Newsletter for information on "Running Control Panet Applets." You might
also consider some of these enhancements:

'possible enhancements:
' allow user to remove apps
' allow user to rearrange icons on desktop
' add labels below icons (increase gridWidth value)
' make text for labels have transparent background
' allow user to create custom folders on this desktop
' if no icon is extracted, use a default icon
' allow user to use custom icons, instead of icon extracted from exe
' enhance exit button with choices, like Windows start button
' create custom taskbar

Making Code Easy to Modify

We've used global variables for some values, so that they are visible inside subs and functions. We've set
up variables to hold certain information, so that the code can be modified easily by changing the values of
these variables at the top of the code. This allows us to make a single change, instead of going through the
entire program code to change many instances of a value. One such variable is called "gridWidth". It
contains the value we use to locate the icons in the X direction. It is set to 40. If you want to place the icons
closer together, make this number smaller. If you want them further apart, make the number larger. Don't
make it smaller than 32, which is the default width for icons, or the icons will overlap one another.

DEMO

'Desktop Shell Demo
'if you use this code,
' please credit Alyce Watson, http://alycesrestaurant.com/

 page 6 / 11

Liberty BASIC Programmer's Encyc

'note that this demo allows user to add apps to desktop
'note that this demo does not allow user to remove apps or rearrange d
esktop
'possible enhancements:
' allow user to remove apps
' allow user to rearrange icons on desktop
' add labels below icons (increase gridWidth value)
' make text for labels have transparent background
' allow user to create custom folders on this desktop
' if no icon is extracted, use a default icon
' allow user to use custom icons, instead of icon extracted from exe
' enhance exit button with choices, like Windows start button
' create custom taskbar

nomainwin
global hDC, gridWidth, gridHeight, appMax
gridWidth = 40 : gridHeight = 40
appMax = 50 'maximum number of apps on desktop

dim apps$(50,4) 'arrays are global by default
redim apps$(appMax, 4)
'apps$(i,1) = filename of exe
'apps$(i,2) = x location on desktop
'apps$(i,3) = y location on desktop
'apps$(i,4) = icon handle

WindowWidth=DisplayWidth:WindowHeight=DisplayHeight

graphicbox #desk.g, -1, -1, DisplayWidth+2, DisplayHeight+2
button #desk.exit, "Exit", DoExit, UL, 4, DisplayHeight-30, 56, 28

open "My Desktop Shell" for window_popup as #desk
 #desk "trapclose Quit"
 #desk.g "down; setfocus"
 #desk.g "when rightButtonUp AddApp"
 #desk.g "when leftButtonDouble RunApp"

 hDC = GetDC(hwnd(#desk.g))
 call PaintDesktop hDC
 call GetIniInfo 'get and draw user icons, flush desktop
 wait

Sub AddApp handle$, mx, my
 for index = 1 to appMax
 if apps$(index,1) = "" then
 filedialog "Add App", "*.exe", exe$

 page 7 / 11

Liberty BASIC Programmer's Encyc

 if exe$ <> "" then
 apps$(index,1) = exe$
 newX = val(apps$(index-1,2)) + gridWidth 'next column
in this row
 newY = val(apps$(index-1,3)) 'use same row
 if newX > DisplayWidth - gridHeight then
 newX = gridWidth 'beginning of new row
 newY = newY + gridHeight 'move to next row
 end if
 apps$(index,2) = str$(newX)
 apps$(index,3) = str$(newY)
 hIcon = ExtractIcon(hwnd(#desk.g), apps$(index,1))
 apps$(index,4) = str$(hIcon)
 'draw icon on desktop at designated location
 result = DrawIcon(hDC, val(apps$(index,4)), val(apps$(
index,2)), val(apps$(index,3)))
 end if
 exit for
 end if
 next
 call DoFlush
 if index = appMax then 'all slots are filled
 notice "All slots are filled. Cannot add more apps."
 end if
 end sub

Sub RunApp handle$, mx, my
 for i = 1 to appMax
 x = val(apps$(i,2))
 y = val(apps$(i,3))
 print "xy is ";x;" ";y
 if (mx>x) and (mx<x+gridWidth) then
 if (mx>y) and (my<y+gridHeight) then
 run apps$(i,1)
 exit for
 end if
 end if
 next
 end sub

Sub GetIniInfo
 for i = 1 to appMax
 exe$ = GetIniFile$("My Desktop Shell", "appName"+str$(i),"none
","mydesktopshell.ini")
 if exe$ = "none" then exit for
 appX$ = GetIniFile$("My Desktop Shell", "appX"+str$(i),"0","my

 page 8 / 11

Liberty BASIC Programmer's Encyc

desktopshell.ini")
 appY$ = GetIniFile$("My Desktop Shell", "appY"+str$(i),"0","my
desktopshell.ini")
 apps$(i,1) = exe$ 'full path to app exe
 apps$(i,2) = appX$ 'x location on desktop of app icon
 apps$(i,3) = appY$ 'y location on desktop of app icon
 'get handle of icon extracted from exe:
 hIcon = ExtractIcon(hwnd(#desk.g), apps$(i,1))
 apps$(i,4) = str$(hIcon)
 'draw icon on desktop at designated location
 result = DrawIcon(hDC, val(apps$(i,4)), val(apps$(i,2)), val(a
pps$(i,3)))
 next
 call DoFlush
 end sub

Sub WriteIniInfo
 for i = 1 to appMax
 if apps$(i,1) = "" then exit for
 call WriteIniFile "My Desktop Shell", "appName"+str$(i), apps$
(i,1), "mydesktopshell.ini"
 call WriteIniFile "My Desktop Shell", "appX"+str$(i), apps$(i,
2), "mydesktopshell.ini"
 call WriteIniFile "My Desktop Shell", "appY"+str$(i), apps$(i,
3), "mydesktopshell.ini"
 next
 end sub

Sub DoFlush
 #desk.g "delsegment flushMe"
 #desk.g "getbmp desk 0 0 ";DisplayWidth;" ";DisplayHeight
 #desk.g "drawbmp desk 0 0; flush flushMe"
 end sub

Sub Quit handle$
 call ReleaseDC hwnd(#desk.g), hDC
 call WriteIniInfo
 for i = 1 to appMax
 if apps$(i,1) = "" then exit for
 hIcon = val(apps$(i,4))
 calldll #user32, "DestroyIcon", hIcon as ulong, re as long
 next
 close #handle$:end
 end sub

Sub DoExit handle$

 page 9 / 11

Liberty BASIC Programmer's Encyc

 call Quit "#desk"
 end sub

'*************
' API WRAPPERS
' api wrappers are copied from http://alycesrestaurant.com/workshop.ht
m
'*************

sub PaintDesktop hwndDC
 calldll #user32, "PaintDesktop", hwndDC as ulong,_
 re as long
 end sub

Sub WriteIniFile lpAppName$, lpKeyName$, lpString$, lpFileName$
 lpFileName$=DefaultDir$+"\"+lpFileName$
 CallDLL #kernel32, "WritePrivateProfileStringA", _
 lpAppName$ As ptr, _ 'section name
 lpKeyName$ As ptr, _ 'key name
 lpString$ As ptr, _ 'key value
 lpFileName$ As ptr, _ 'ini filename
 result As long 'nonzero = success
 end sub

Function GetIniFile$(lpAppName$, lpKeyName$,lpDefault$,lpFileName$)
 lpFileName$=DefaultDir$+"\"+lpFileName$
 nSize=100
 lpReturnedString$=Space$(nSize)+Chr$(0)
 CallDLL #kernel32, "GetPrivateProfileStringA", _
 lpAppName$ As ptr, _'section name
 lpKeyName$ As ptr, _'key name
 lpDefault$ As ptr, _'default string returned if there is no en
try
 lpReturnedString$ As ptr, _ 'destination buffer
 nSize As long, _ 'size of destination buffer
 lpFileName$ As ptr, _ 'ini filename
 result As ulong 'number of characters copied to buffer

 GetIniFile$=Left$(lpReturnedString$,result)
 end function

Function ExtractIcon(hW, file$)
 hInst=GetWindowLong(hW, _GWL_HINSTANCE)
 CallDLL #shell32, "ExtractIconA",hInst as uLong,_
 file$ As Ptr, 0 As Long, ExtractIcon as uLong
 End Function

 page 10 / 11

Liberty BASIC Programmer's Encyc

Function DrawIcon(hdc,hIcon,x,y)
 CallDLL #user32, "DrawIcon",hdc as uLong, x As Long,_
 y As Long, hIcon as uLong, DrawIcon As Long
 End Function

Function GetWindowLong(hW, type)
 CallDLL #user32, "GetWindowLongA",hW as uLong,_
 type As Long,GetWindowLong As Long
 End Function

Function GetDC(hWnd)
 CallDLL #user32, "GetDC",hWnd as uLong,GetDC as uLong
 End Function

Sub ReleaseDC hWnd, hDC
 CallDLL#user32,"ReleaseDC",hWnd as uLong,_
 hDC as uLong,result As Long
 End Sub

Table of Contents
Creating a Shell

Painting the Desktop

What is a Shell?

Setting Up a Desktop

Painting the Desktop

Adding Application Icons

Remembering the User's Choices

Running Programs from the Shell

Enchancements

Making Code Easy to Modify

DEMO

Powered by TCPDF (www.tcpdf.org)

 page 11 / 11

http://www.tcpdf.org

	DesktopShell

