
Liberty BASIC Programmer's Encyc

Graphics 101 – plotting a function
- by -

 tsh73
- Jul 31, 2010 1:29 pm

Table of Contents
Graphics 101 – plotting a function

Goal

Non-goals

Pre-requisites

Where to draw

Pixels and coordinates

Set a Pixel

Set a bunch of Pixels

Why, it's a line!

Why, it's a circle!

Archimedes Spiral

Turtle was here.

Plotting the Sine Function

Scaling any plotted function.

Adding text labeling

Adding color and thickness

Causing graphics to persist with FLUSH

Saving the image.

 page 1 / 14

https://www.wikispaces.com/user/view/tsh73
https://www.wikispaces.com/user/view/tsh73

Liberty BASIC Programmer's Encyc

Where to get more

Addendum

Goal

Once upon a time there was a person who wanted to plot some graphs. He knew his math well enough, but
had never drawn a thing in BASIC. Of course he looked at the help file, but just became confused. Well,
no wonder, the help file is a reference document, not a tutorial. So I thought I would write a tutorial,
starting from opening the graphics window through plotting pixels, drawing points, lines and maybe adding
text for labeling.

Non-goals

I am not going to discuss GUI or animation or sprites – I am just going to teach how to draw a static
picture; namely, to plot a function.

Pre-requisites

I assume that you have a rudimentary working knowledge of Liberty BASIC, that you are familiar with the
mainwin and can calculate, check conditions, loop and print results.

Where to draw

So prior to this you worked in mainwin. It is nice but it is not designed for drawing, only for displaying
text. So, we need something to draw upon.
There are two controls that allow drawing, a window opened for graphics, and a graphicbox control within
a window. You can have several graphicboxes on a window and draw in all of them. Pretty cool, but for
now we take the simplest course, a window of type graphics –

open "test" for graphics as #gr
#gr "trapclose [quit]"
wait

[quit]
 close #gr
 end

That's about as simple as it gets.

 page 2 / 14

Liberty BASIC Programmer's Encyc

The first line opens a window of type graphics, titled "test". We can draw on that. On my computer, it's
about 300x300 pixels. You can try graphics_nsb_nf instead of graphics and get an even simpler window.
The second line creates the trapclose handler and names a [branch label] that will get called if the window
is closed. The third line causes our GUI to wait for user input.

The last lines are called if the window is closed either by a mouse click or Alt-F4 being pressed. They
explicitly close the window and end the program. If you don't do this you will get an error report when the
program stops.

If you do not need the mainwin in view you can suppress it by typing "nomainwin" at the top of your
program. You might want to enable it occasionally to print variables for debugging, but generally speaking
when you run a GUI you will suppress mainwin. If you need a larger window with more drawing space,
you set WindowWidth and WindowHeight before opening the window. Easy!

Pixels and coordinates

Ahhh pixels, exactly!

They are just dots on your monitor. Anything you see on a monitor is composed of colored dots named
pixels. A pixel is the smallest element of any picture.

At this moment your monitor is showing pixels in its current resolution, say 1280x1024. That is the size of
the screen in pixels, (it can be changed) and is the maximum size of the window you can show and draw
upon.

Each pixel has coordinates. Basically that means they are numbered from 0, left to right and top to bottom.
With whole numbers – there are no pixels between 0 and 1.

In math they teach another coordinate plane, where axes go from left to right and from bottom to top.
Plenty of space is envisioned between whole points.

We are going to respect that when plotting functions.

Set a Pixel

 page 3 / 14

Liberty BASIC Programmer's Encyc

We know that a screen consists of pixels, and pixels have coordinates. All we need to do to draw a pixel is
to make a command and give coordinates?
Almost:

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"
#gr "set 100 100"
wait

[quit]
 close #gr
 end

As you see, we need to "put pen down" before drawing. (Unfortunate anachronism I might add).

We set a single pixel to black at 100, 100 coordinates. That is 100 pixels to the right and down from top-
left corner of window. (More exactly, from top-left corner of window client area – its "working zone").

Set a bunch of Pixels

A single point is barely visible. Let's make a bunch, shall we? But how are we going to do it? Why, with
loops. FOR loops will do just fine. Let X change from 100 to 200, and Y equal to X. But how do we put
these numbers inside of the "set" command string? Let's see. Actually, line

#gr "set 100 100"

is a shortcut. The full version looks like this:

print #gr, "set 100 100"

Wait! It looks familiar?
It turns out that our graphic command (as ALL graphic commands) is an ordinary PRINT operator. We
print to a window (#gr is a window handle) string, containing the command.
That answers the question how to put numbers in a command. Just as in PRINT:

#gr "set ";100; " ";100

Or

 page 4 / 14

Liberty BASIC Programmer's Encyc

X=100: Y=100
#gr "set ";X; " ";Y

Just watch your spaces.
editor's note: see "Understanding Syntax" in the Liberty BASIC helpfile. Including variables in command
strings requires that they be placed outside of the quotation makes, and blank spaces must be preserved.

(Handy tip: If your drawing command does not work as expected, turn it into an ordinary PRINT statement
--by replacing #gr with print-- and examine the line in the mainwin.)

So here's our program:

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"
for X=100 to 200
 Y=X
 #gr, "set ";X;" ";Y
next
wait

[quit]
 close #gr
 end

Why, it's a line!

Indeed. We just drew a line. I'm pretty sure there must be more straightforward ways to draw straight
lines? Sure; there are several, but most straightforward is

#gr "line 100 100 200 200"

The numbers are the coordinates of the first and second points, respectively.

You can also place a first point with a dedicated command and then draw from this point to another one.
That comes in handy then we need to draw point-by-point chain of lines:

#gr "place 100 100"

 page 5 / 14

Liberty BASIC Programmer's Encyc

#gr "goto 200 200"

Remember, if we use variables we must preserve spaces in command lines. (It applies EVERYWHERE).

ptOne = 100
ptTwo = 200
#gr "place ";ptOne;" ";ptOne
#gr "goto ";ptTwo;" "ptTwo

Why, it's a circle!

Is a cirle too easy a task? Let's try something fancy, with SINE and COSINE:

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"
pi=acs(-1)
for t=0 to 2*pi step 0.01
 X=100*cos(t)+150
 Y=100*sin(t)+150
 #gr, "set ";X;" ";Y
next
wait

[quit]
 close #gr
 end

What? A pretty round circle?

Let’s see why. It’s all math, you know. We have that Pi number, equal to 3.1415926… but much simpler to
put pi=acs(-1) instead. If we change angle (t) from 0 to 2Pi, which is a full circle measured in radians, that
still converts to ordinary 0...360 degrees full circle. Degrees are obtained from radians by multiplying by
180/Pi Point (cos(t), sin(t)) will go along unit circle (circle with radius=1 and center (0,0)) on the
coordinate plain.

All we added was scaling that to radius 100 (by multiplying) and shift its center from (0,0) to (150, 150)
(by adding).

And of course there is an easier way to draw a circle. Just place the center point, then issue the graphics
command to draw a circle with desired radius:

 page 6 / 14

Liberty BASIC Programmer's Encyc

#gr "place 150 150"
#gr "circle 100"

Archimedes Spiral

A bunch of dots capable of more!
So far our examples looked too complex for the task solved (things drawn) and there always was another,
simpler way.

Do we need plotting point by point at all? Why, sure we do. Look at this modification of the last program.
This beauty is called Archimedes' spiral (and actually this is an example of polar plotting, that is, plotting
of function in polar coordinates. Never mind.)

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"

pi=acs(-1)
nLoops=10
for t=0 to 2*pi*nLoops step 0.01
 X=100*t/(2*pi*nLoops)*cos(t)+150
 Y=100*t/(2*pi*nLoops)*sin(t)+150
 #gr, "set ";X;" ";Y
next
wait

[quit]
 close #gr
 end

Turtle was here.

(and we need some stuff eventually)
Actually, besides the “line, point” approach there is another one: Turtle graphics.
Turtle graphics is the stuff like “pen down, go 30, pen up, go 20, turn 30, pen down, go 10”. Liberty
BASIC supports it, too. It allows us to easily draw stuff like this:

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"

#gr "place 150 250" 'initial position found by trial and error

 page 7 / 14

Liberty BASIC Programmer's Encyc

for i=1 to 30
 #gr "go 200"
 #gr "turn ";180+15 '180 degrees means turn backwards.
 'So, backwards and some
next
wait

[quit]
 close #gr
 end

I just think it's not well suited to plotting functions. (But it nicely covered in the LB tutorial, so look there
in need). We'll need one thing, though.

Here's one trick I'll show you. When we created the window, I said it's approximately 300x300 pixels. But
how do we measure it? There is a command that places pen in the center of a drawing area. Another
command retrieves the current coordinates into a pair of variables. When you double these variables, you'll
get width and height of drawing area!

#gr "home"
#gr "posxy w h"
width=2*w: height=2*h

So "approximately 300x300 pixels" turned out to be 312x332.

Plotting the Sine Function

First, recall some math. Let us say, we want to plot the sine from –Pi to Pi, that is, full period. And we
know that sine goes from -1 to 1, no more. So we have "logical" coordinates by X in range [-3.14, 3.14]
and by Y in range [-1,1].

This should be mapped on "physical" coordinates – to actual pixels, starting from (0,0) and going
approximately to (300,300). Some languages provide automatic translation; we have to do it ourselves. Do
not worry, it's easy.

In our case, for the X coordinate, we should move X range to 0: X+3.14, and then stretch that range (2*Pi
roughly makes 6) to 300 pixels: (X+3.14)*50 (approximately). The same applies to Y: Y+1, (Y+1)*150.
But the Y axis on a computer is inverted, so we should do this: 300-(Y+1)*150. Let's try that.

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"

 page 8 / 14

Liberty BASIC Programmer's Encyc

#gr "down"
pi=acs(-1)

for X=0-pi to pi step 0.01
 Y=sin(X)
 #gr "set ";(X+3.14)*50;" ";300-(Y+1)*150
next
wait

[quit]
 close #gr
 end

Wow. The sine wave all right, with proper orientation. If you don't like to see gaps between dots, you can
connect dots by using "goto" instead of "set":

#gr "goto ";(X+3.14)*50;" ";300-(Y+1)*150

Though, with that guesswork, we'll have a hard time trying to place axes right…

Scaling any plotted function.

Let's take "any" function. Let us use f(x)= 1.5*x^2-2*sin(5*x), x in [-2,3].

To draw any function easily and be able to place axes, we need to eliminate the guesswork. Let’s build a
formula, then use it to uniformly translate logical (math) coordinates to physical (screen) ones.

In general form:
To translate X from interval [0,1] to [c,d] we'll do X*(d-c)+c.
To translate X from interval [a,b] to [0,1] we'll do (X-a)/(b-a).
Combining, we'll get universal formula:
To translate X from interval [a,b] to [c,d] we'll do (X-a)/(b-a)*(d-c)+c.

We are going to use it to translate math coordinates to screen coordinates, so [a,b] is math range and [c,d]
is screen one. But we can use it backwards, for example if we want to translate mouse clicks to math
coordinates.

For ease of use, I suggest that we'll create two functions: sx(x) and sy(y), that'll convert math X to screen X
and math Y to screen Y, respectively. But – our formula needs a bunch of other numbers? No problem –
all those numbers (a,b,c,d) are just range boundaries, and will not change. So we make them global just to
save typing (lot's of it). So, first global variables would be size of drawing area, let's name it winW, winH.
Other globals would be X range, name it xmin, xmax, and Y range, name it ymin, ymax.

 page 9 / 14

Liberty BASIC Programmer's Encyc

Normally when plotting we know the X range. But where do we get the Y range? To get it, we just step
through the X range with the same step we'll be plotting our graph and calculate ymin, ymax. Of course
that would mean we calculate f(x) twice – first for getting Y range, second for actual plotting – but
computers are pretty fast now.

One last thing before we write the program. The coordinate axes are just two lines, that go through point
(0,0).

nomainwin
global winW, winH, xmin, xmax, ymin, ymax
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"

#gr "home"
#gr "posxy w h"
winW=2*w: winH=2*h
'f(x)=1.5*x^2-2*sin(5*x), x in [-2,3]
xmin=-2: xmax=3

nPoints=winW 'we have only this much screen dots in X range
dx=(xmax-xmin)/nPoints 'so this will be step in math coordinates

'now, to get ymin, ymax we have to loop
ymin=f(xmin)
ymax=ymin
for x=xmin to xmax step dx
 y=f(x)
 if ymin > y then ymin = y
 if ymax < y then ymax = y
next

'now we just - plot function. Note same loop
y=f(xmin)
#gr "set ";sx(xmin);" ";sy(y) 'just set first dot
for x=xmin to xmax step dx
 y=f(x)
 #gr "goto ";sx(x);" ";sy(y) 'then connect dots
next

'and finally, add axis
#gr "line ";sx(xmin);" ";sy(0);" ";sx(xmax);" ";sy(0)
#gr "line ";sx(0);" ";sy(ymin);" ";sx(0);" ";sy(ymax)
wait

 page 10 / 14

Liberty BASIC Programmer's Encyc

[quit]
 close #gr
 end

'"any" function. You can change it as you like
function f(x)
 f=1.5*x^2-2*sin(5*x)
end function

'To translate X from interval [a,b] to [c,d] we'll do (X-a)/(b-a)*(d-
c)+c.
'create two functions: sx(x) and sy(y)
function sx(x)
 sx=(x-xmin)/(xmax-xmin)*winW
end function
function sy(y)
 sy=winH-(y-ymin)/(ymax-ymin)*winH 'Y is inverted, so winH-...
end function

Damn. This thing got a bit long, but I hope still understandable.

Adding text labeling

That's easy. You place the pen, then print "\" and the text. Text is placed with the top-left corner at the pen
position. If you issue another text print statement, the output will be stacked under first one. Just
experiment a little.

nomainwin
open "test" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"
#gr "place 100 100"
#gr "\Hello"
#gr "\from Liberty BASIC"
wait

[quit]
 close #gr
 end

For labeling a graph, you can use our translating functions sx(), sy(). So, for our graph, it could be like this:

 page 11 / 14

Liberty BASIC Programmer's Encyc

'labeling
#gr "place ";sx(0)+5;" ";sy(0)-5
#gr "\0,0"
#gr "place ";sx(xmax)-20;" ";sy(0)-5
#gr "\X"
#gr "place ";sx(0)+5;" ";sy(ymax)+20
#gr "\Y"

And if you are going really fancy, you can change font, size and style, which is adequately explained in the
help file.

Adding color and thickness

As easy as could get. You just command "color red" and "size 3",

#gr "color red"
#gr "size 3"

(For the list of color names recognized by Liberty BASIC, look in the help file.).
All points and lines you'll draw after will be red and 3 pixels thick. But you can turn it back of course:

#gr "color black"
#gr "size 1"

Causing graphics to persist with FLUSH

For now you probably encountered that strange thing – when you run a program, it'll draw fine, but if you
try to cover that window with another or do minimize/restore, it returns empty? Alas, that's not a bug – it's
a feature. But the remedy is simple: just issue the command "flush" after drawing. (You probably will want
to do it in the end – each flush takes memory.)

nomainwin
open "Try to cover me" for graphics_nsb_nf as #gr
#gr "trapclose [quit]"
#gr "down"
#gr "place 50 100"
#gr "\I am flushed - I'll stay"
#gr "flush"
#gr "\I am NOT flushed - I'll disappear"

wait

 page 12 / 14

Liberty BASIC Programmer's Encyc

[quit]
 close #gr
 end

Saving the image.

Why, yes. There couple of commands just for saving the image drawn by your program. The first one is
getbmp, that takes the picture from your graphics window. Later it could be drawn with drawbmp, or
saved with bmpsave. For our graph, it will be

#gr, "getbmp drawing 1 1 ";winW;" ";winH
bmpsave "drawing", "graph.bmp"

Now you have this picture saved as graph.bmp in the directory with your program. Here what we'll got:

Where to get more

Why, if you have read this and want more, may be it's time to look back into a help file? I hope it will
make more sense now ;)

Some graphics tutorials from the newsletters:
Turtle Graphics Tutorial
Use of Color in Graphics
Bitmap Graphics Tutorial
Segments and Flushing
Drawn Objects
Graphics Text Tutorial

UNDERSTANDING AND PLOTTING POLAR COORDINATES -
 Steelweaver52

Tom Nally has taken graphics plotting to a very advanced level by plotting 3-dimensional graphics. See the
Wire Frame Library tutorials here at LBPE.
Wire Frame Library

 page 13 / 14

http://babek.info/libertybasicfiles/lbnews/nl98/2.htm
http://babek.info/libertybasicfiles/lbnews/nl100/color.htm
http://babek.info/libertybasicfiles/lbnews/nl100/bmp.htm
http://babek.info/libertybasicfiles/lbnews/nl102/4.htm
http://babek.info/libertybasicfiles/lbnews/nl105/DrawnObjects.htm
http://babek.info/libertybasicfiles/lbnews/nl111/graphics.htm
/PolarPhun
https://www.wikispaces.com/user/view/Steelweaver52
https://www.wikispaces.com/user/view/Steelweaver52
/graphics#Graphics%20and%20Game%20Programming-Liberty%20BASIC%20Wire%20Frame%20Library

Liberty BASIC Programmer's Encyc

Addendum

Whole program (just in case you missed something):
graph_tutorial.bas

Powered by TCPDF (www.tcpdf.org)

 page 14 / 14

/graph_tutorial.bas
http://www.tcpdf.org

	Graphics101plotting

