Liberty BASIC Programmer's Encyc

Operations in a loop.

Single-pass random optimal selection.

tsh73, may 2013

Table of Contents

Single-pass random optimal selection.
(How come?)

The problem:

Easy (read no-thinking) wa

Cutting it 2x

And now, in a single pass

(How come?)

I encountered this problem in one of my programs.

I thought solution to be kind of cool, in a nerdy kind of way; but I had a doubt if it’s too obvious to warrant
an article of its own. So I checked it on my colleague, a teacher; and she said “I think it’s interesting, go
ahead and post it”. So here I am.

The problem:

Imagine you have a choosing program, likely involving big (lengthy) search. You are interested in picking
just one of “best” solutions; being “best” amounts to having maximum of some criteria — a single number.
However, beforehand you have no idea what number would it be; more, you have no idea if it would be
single solution with maximum criteria or hundreds of them.

But in case you have several of them, you think it would be nice to pick one of them at random — I mean,
with equal probability. (In case you program some game, say Tic-tac-toe, it would make computer
opponent play more interesting — instead of picking same response along each path, it would show some
variation). (Note: You can easily have first of them or last of them, depending of putting > or >= in your
maximum search code; but with equal probability?)

page 1/5

/tsh73

Liberty BASIC Programmer's Encyc

Easy (read no-thinking) way

So. Easy (read no-thinking) way if doing this would require several passes of search loop.

1. On the first pass, you determine maximum criteria value (“best”).
2. On the second pass, you count number of occurrences (Nbest) of that “best” value.

Then you can dimension array for that value (dim A(Nbest))
3. Third pass fill that array with solutions yielding “best” criteria.
And at last, we can finally generate random number R between 1 and Nbest and return A(R).

' probl em

"You have a choosing program likely involving big (lengthy) search.
"You are interested in picking just one of "best" solutions;

"being "best" amounts to having maxi num of sone criteria - a single nu
nber .

'v.1l. Easy (read no-thinking) way

"for now, i 1..N would be search space, b(i) is criteria
i, so that b(i)= max, is solution (one of).
N=100
di m b(N)
NN=i nt (rnd(0) *20) +20
for i =1to N
b(i)=int(rnd(0)*NN)
next
print "We have "; N, " integer random nunbers."

"On the first pass, you determine maximumcriteria value ("best").

best = -1e40 'so that it would be guaranteed | ess then maxi num
for i =1to N
if b(i)>best then best=b(i)
next
print "Maximumof them "; best

"On the second pass, you count nunber of occurrences (Nbest) of that
"best" val ue.

Nbest =0
print "solution", "val ue"
for i =1to N

if b(i)=best then
Nbest =Nbest +1

page2/5

Liberty BASIC Programmer's Encyc

next

print M----- e

print "Num of sol utions(maxununs) "; Nbest

" Then you can dinension array for that value (di m A(Nbest))
di m a(Nbest)

"Third pass fill that array with solutions yielding "best" criteria.
j=0
print "nunber", "sol ution", "val ue"
for i =1to N
if b(i)=best then
j=j+1
a(j)=i
print j, a(j), b(a(j))
end if
next
print M----- e "

"And at last, we can finally generate random nunber R between 1 and Nb
est

R=i nt (rnd(0) *Nbest) +1

"and return A(R).

print "We choose solution ";a(R);" with value ";b(a(R))

This approach has one definite value — clarity. Remember?

Make it work — make it work right — make it work fast, and only in that order!

But supposed you already at “work right” phase, some speeding up might as well be welcome. We started
with “big (lengthy) search”, remember?

Cutting it 2x

Currently, our algorithm passes over that lengthy search trice.
We can rather easily cut it 2x:
First, we can combine first two phases in one, in a single pass

"On the first pass, you determine maxinmumcriteria value ("best").
"On the second pass, you count nunber of occurrences (Nbest) of that
"best" val ue.

' conbine first two phases in one, in a single pass

best = -1e40 'so that it would be guaranteed | ess then maxi mum
Nbest =0
for i =1to N

page3/5

Liberty BASIC Programmer's Encyc

if b(i)=best then
Nbest =Nbest +1
end if
if b(i)>best then
‘order is inportant: it's too late to check if(b(i)=best)

best =b(i) "after assignment on this |ine!
Nbest =1
end if
next
print "Maxi mumof them "; best

print "Num of sol utions(maxununs) "; Nbest

So that leaves us with two passes (of three)
Second, we can skip that array business altogether.
We just generate R then run last pass, stopping after hitting R-th best value.

"W just generate R then run | ast pass, stopping after hitting R
th best val ue.

R=i nt (rnd(0) *Nbest) +1

print "We choose ";R "-th solution”

] =0
print "nunber","sol ution", "val ue"
for i =1to N
if b(i)=best then
j=j+1
print j, i, b(i)
if =R then exit for "stopping after hitting R
th best val ue
end if
next
print "-------mii e "
print "We choose solution ";i;" with value ";b(i)

That will cost us from around 1 (best case, R=1) to around full search pass (worst case, R=Nbest), in
average — a half. So we end up with 12 of a full search. As I promised, 2x cut from three passes :).

And now, in a single pass

Could it be made better?

Well, yes.

We will do all that in a single pass.
Here’s how.

page4/5

Liberty BASIC Programmer's Encyc

Then we hit best value, we could have a counter — how much times we already had that best value?

e If answer is 0, (this is best value and it happened just now), then we just keep it, no question asked.
e If answer is 1, we have N=2 equal values. So we take new value with probability 1/N
(ha! Tt just means Y2 in our case!), that is, with condition

olf rnd(0)

page5/5

http://www.tcpdf.org

	RandomOptimalSelection

