
Liberty BASIC Programmer's Encyc

Reviewing the Stylebits Parameters

The four parameters of stylebits are AddBit, RemoveBit, AddExtendedBit, RemoveExtendedBit. For a
review of these four parameters, and an introduction to Stylebits in general, please view Stylebits -
Windows.

Listboxes and Colors

The native listbox is black text against a white background. To change the background color to match the
default color of the user's scheme, include

ListboxColor$ = "Buttonface"

prior to defining that listbox. Change the ListboxColor$ to white (or any other valid color) for subsequent
listboxes if desired. To change the color of the text, use ForegroundColor$ before opening the window.
Only one color may be assigned to all controls with ForegroundColor$.

Stylebits, Listboxes and Borders

The default border is single edged. Techniques to change the border of a listbox are similar to changing the
border of a window, textbox or any other control.

 Borderless

ListboxColor$ = "Buttonface"
Stylebits #style.lb1, 0, _WS_BORDER, 0, _WS_EX_CLIENTEDGE

 Sunken Border

Stylebits #style.lb2, 0, 0, _WS_EX_CLIENTEDGE or _WS_EX_STATICEDGE, 0

 Raised Border

Stylebits #style.lb2, 0, 0, _WS_EX_DLGMODALFRAME, 0

 Resizable Border

Stylebits #style.lb2, _WS_THICKFRAME, 0, 0, 0

 page 1 / 5

/Stylebits%20-%20Windows
/Stylebits%20-%20Windows

Liberty BASIC Programmer's Encyc

Stylebits, Listboxes and Scrollbars

The default scrollbar lies on the right side of the listbox. When the listbox is tall enough to contain all the
items, this scrollbar shows in the disabled state. Using the stylebits _WS_HSCROLL, _WS_VSCROLL,
_WS_EX_LEFTSCROLLBAR, and _WS_EX_RIGHTSCROLLBAR, you can hide and even reposition
the scroll bar.

 Add Horizontal Scrollbar and Remove Vertical Scrollbar

Stylebits #style.lb1, _WS_HSCROLL, _WS_VSCROLL, 0, 0

 Add Horizontal Position Scrollbar on Left

Stylebits #style.lb2, 0, 0, _WS_EX_LEFTSCROLLBAR, 0

 Remove Default Disabled Listbar

Stylebits #style.lb3, 0, _LBS_DISABLENOSCROLL, 0, 0

Stylebits, Listboxes and Columns

The native listbox displays a single, scrolling column. The stylebits _LB_MULTICOLUMN allows the
listbox to display more than one column. The number of columns is NOT determined by assigning a value.
Rather, the number of columns is determined by the height of the listbox. Only vertically visible items are
assigned to each column. By carefully controlling the height of the listbox, thus controlling the number of
vertically visible listed items, the programmer can control the number of columns. The width of the
column has no effect upon the number of columns. If not all columns will be visible, assign the stylebits
_WS_HSCROLL as well.

 Multicolumn Listbox with a Horizontal Scrollbar

Stylebits #style.lb3, _LBS_MULTICOLUMN or _WS_HSCROLL, 0,0, 0

Stylebits, Listboxes and Selection

A selection in the native listbox is chosen by double left - clicking. This highlights that item. Only one
selection can in the selected state. That selection is retrieved using either the selection? or the
selectionindex? command. Stylebits allow more than one item to be in the selected state at any given time.

 page 2 / 5

Liberty BASIC Programmer's Encyc

 Multiple Single Selections - String selection is toggled each time the user clicks or double-clicks
the string. Any number of strings can be selected.

#style.lb2, _LBS_MULTIPLESEL, 0, 0, 0

 Extended Selection - The user can select multiple items using the SHIFT key and the mouse or
special key combinations. Ctrl - Mouse Click selects multiple single items. Shift - Mouse Click
selects a range of items.

Stylebits #style.lb3, _LBS_EXTENDEDSEL, 0, 0, 0

 No Selection - Specifies that the list box contains items that can be viewed but not selected.

Stylebits #style.lb1, _LBS_NOSEL, 0, 0, 0

Stylebits and API Calls

Stylebits do allow multiple and extended selections in listboxes, but an API call (SendMessageA) is
required to retrieve those selections. _LB_SETSEL is used to select one, multiple, or all items. By
changing the state parameter, _LB_SETSEL is also used to clear one, multiple, or all items. The number of
selected items is obtained with _LB_GETSELCOUNT. Because the Listbox sees the items beginning with
0, it may be necessary to decrement the item number by 1.

'Setting Multiple Selections and Getting Multiple Selections
'with SendMessageA API calls
'A special Thank You to Bill Beasley for getting this code started

 Dim itemArray$(20)
 For i = 1 to 20
 itemArray$(i) = "Item Number ";Space$(i < 10);Str$(i)
 Next i
 nullParameter = 0 'Used as filler when parameter irrelevant

 Nomainwin
 WindowWidth = 400
 WindowHeight = 360

 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

 Listbox #main.lb, itemArray$(), [selectItem], 20, 20, 140, 200
 '_LBS_MULTIPLESEL = Multiple Single Selections using Left Click
 Stylebits #main.lb, _LBS_MULTIPLESEL, 0, 0, 0

 page 3 / 5

Liberty BASIC Programmer's Encyc

'_LBS_EXTENDEDSEL = Multiple Single Selections using Ctrl - Left Click
 as well as
 'selection of a range of items using Shift - Left Click
 'Stylebits #main.lb, _LBS_EXTENDEDSEL, 0, 0, 0
 Statictext #main.st, "", 20, 230, 350, 100
 Button #main.b1, "Count Items Selected"
, [nItemsSelected], UL, 190, 40, 170, 32
 Button #main.b2, "List Items Selected"
, [listItemsSelected], UL, 190, 85, 170, 32
 Button #main.b3, "Select All Items"
, [selectAllItems], UL, 190, 130, 170, 32
 Button #main.b4, "Clear All Items"
, [clearAllItems], UL, 190, 175, 170, 32

 Open "Listbox Multi Select" for Window as #main
 #main "Trapclose [endDemo]"
 #main "Font Times_New_Roman 12 Bold"
 hLB = hwnd(#main.lb)

'Select some items
 For i = 1 to 20 step 3
 null = SendMessageA(hLB, _LB_SETSEL, 1, i)
 Next i
 #main.st "Every 3rd Item is Selected"

 Wait

[selectItem]
'No action necessary
 Wait

[nItemsSelected]
 nItemsSelected = SendMessageA(hLB, _LB_GETSELCOUNT, nullParameter,
 nullParameter) 'no relevance (par1), (par2)
 #main.st "There are ";nItemsSelected;" items selected."
 Wait

[listItemsSelected]
 itemsSel$ = ""
 For i = 1 to 20

 isSel
= SendMessageA(h
LB, _LB_GETSEL, i - 1, nullParam

 page 4 / 5

Liberty BASIC Programmer's Encyc

eter) 'i - 1 = Item Number (par1), no relevance (par2)
 If isSel Then
 itemsSel$ = itemsSel$;itemArray$(i);", "
 End If
 Next i
 itemsSel$ = Left$(itemsSel$, Len(itemsSel$) - 2)
 #main.st itemsSel$
 Wait

[selectAllItems]
 allSel = SendMes
sageA(hLB, _LB_SETSEL, 1, -1)
' 1 (par1) = Flag to Set, -1 (par2) = ALL
 Wait

[clearAllItems]
 allClear = Sen
dMessageA(hLB, _LB_SETSEL, 0, -1)
'0 (par1) = Flag to Clear, -1 (par2) = ALL
 Wait

[endDemo]
 Close #main
 End

Function SendMessageA(hW, msg, par1, par2)
 CallDLL #user32, "SendMessageA",_
 hW as Ulong, _ 'Handle of the control (listbox)
 msg as Long, _ 'Stylebits (Windows Constant)
 par1 as Long, _ 'Parameter 1 (sometimes irrelevant)
 par2 as Long, _ 'Parameter 2 (sometimes irrelevant)
 SendMessageA as long 'Return Value, 1 = success
End Function

These are just some examples of what you can do with stylebits and listboxes. With experimentation, you
may find more.

A List of Stylebits

You can get a list of all dwStyles and dwExStyles available with the Stylebits command at the MSDN
Library - List Box Styles.

Powered by TCPDF (www.tcpdf.org)

 page 5 / 5

http://msdn.microsoft.com/en-us/library/ms632600(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms632680(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb775149(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb775149(VS.85).aspx
http://www.tcpdf.org

	Stylebits - Listboxes

