
Liberty BASIC Programmer's Encyc

Creating, Reading, and Appending Sequential Text Files

Sequential File Commands and Operations
Creating a Sequential Text File
Reading a Sequential Text File

LOF()
EOF()
Counting Data
Line Input
Comma Deliminators
Inputto$()
Input$()

Appending a Sequential Text File
Common Errors

A sequential text file is a file where characters are placed in sequence, one right after the other. Sequential
text files have no set format other than a beginning and an end. A sequential text file can only be read
starting from the beginning of the file. Each character is printed as an ASCII text character. The most
common example of a sequential text file is the .txt file saved with Notepad or any other editing tool. Run
the following code to see the output of simple PRINT statements.

 PRINT "Tom Sawyer"
 PRINT "Huckleberry Finn"
 PRINT "The Prince and the Pauper"
 PRINT "A Connecticut Yankee in King Arthur's Court"
 PRINT "A Tramp Abroad"

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

When the program is closed, the text is gone. A sequential text file allows that text to be saved to file.

Sequential File Commands and Operations

 page 1 / 19

/TutorialSequentialTextFile#sf01
/TutorialSequentialTextFile#sf02
/TutorialSequentialTextFile#sf03
/TutorialSequentialTextFile#sfLOF
/TutorialSequentialTextFile#sfEOF
/TutorialSequentialTextFile#sfcount
/TutorialSequentialTextFile#sfldel
/TutorialSequentialTextFile#sfcdel
/TutorialSequentialTextFile#sfudel
/TutorialSequentialTextFile#sfidel
/TutorialSequentialTextFile#sf04
/TutorialSequentialTextFile#sf05

Liberty BASIC Programmer's Encyc

There are three basic operations in sequential text files.

1. Creating and writing data into a file
2. Reading data from an existing file
3. Appending or adding data into an existing file

Basic File commands and functions include

OPEN- used to access the file
OUTPUT - used to write data to the file
INPUT - used to read data from the file
LOF() - length of file
EOF() - end of file
CLOSE - used to close the file

Special File commands and functions include

LINE INPUT - extract a full line of data
INPUTTO$ - extract data up to the assigned deliminator
INPUT$() - extract a number of bytes of data starting from the beginning

Creating a Sequential Text File

Sequential text files are always created in this fashion

OPEN "FileName.ext" for OUTPUT as #1

The commands OPEN and OUTPUT are case-insensitive. "FileName.ext" can be any name and extension
you choose. The file name can also be a variable.

fName$ = "FileName.ext"
OPEN fName$ for OUTPUT as #1

#1 is also an arbitrary name. #a, #MyTextFile, #123xyz, or any other combination of numbers and letters
will work as well.
Once the file has been opened, data can be written into that file. The data can be literal

PRINT #1, "Tom Sawyer"

or a variable

 page 2 / 19

Liberty BASIC Programmer's Encyc

t$ = "Tom Sawyer"
PRINT #1, t$

Finally, when all the data has been written, the file must be closed.

CLOSE #1

The following code creates the text file "TwainNovels.txt"

OPEN "TwainNovels.txt" for OUTPUT as #1
 PRINT #1, "Tom Sawyer"
 PRINT #1, "Huckleberry Finn"
 PRINT #1, "The Prince and the Pauper"
 PRINT #1, "A Connecticut Yankee in King Arthur's Court"
 PRINT #1, "A Tramp Abroad"
CLOSE #1
END

Run the above code before proceeding with this tutorial.

Reading a Sequential Text File

Reading a sequential text file also requires the file be OPENed, but for INPUT.

OPEN "TwainNovels.txt" for INPUT as #1
 INPUT #1, n1$
 INPUT #1, n2$
 INPUT #1, n3$
 INPUT #1, n4$
 INPUT #1, n5$
CLOSE #1
 PRINT n1$
 PRINT n2$
 PRINT n3$
 PRINT n4$
 PRINT n5$
END

Output

 page 3 / 19

Liberty BASIC Programmer's Encyc

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

LOF - Length of File

The length, or size, of a sequential text file is determined by the number of characters it contains. Each
character occupies one byte. That size is obtained with the LOF() function. The file must first be opened.

OPEN "TwainNovels.txt" for INPUT as #1
 Print "LOF = ";LOF(#1)
 INPUT #1, n1$
 INPUT #1, n2$
 INPUT #1, n3$
 INPUT #1, n4$
 INPUT #1, n5$
CLOSE #1
 nChars = 0
 PRINT n1$
 nChars = nChars + Len(n1$)
 PRINT n2$
 nChars = nChars + Len(n2$)
 PRINT n3$
 nChars = nChars + Len(n3$)
 PRINT n4$
 nChars = nChars + Len(n4$)
 PRINT n5$
 nChars = nChars + Len(n5$)
 Print "nChars = ";nChars
END

Output

LOF = 118
Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad
nChars = 108

 page 4 / 19

Liberty BASIC Programmer's Encyc

There is an inequality here. LOF equals 118 and nChars equals 108. Where are the other 10 characters?

End-of-Line Markers

Windows marks the end of each record with a carriage return / line feed sequence. At the end of each
novel title are these two end-of-line marker characters: Chr$(13) and Chr$(10), two extra characters for
each of the five lines. That's ten extra characters.
Sequential text files save all characters in their corresponding ASCII format and display as they do on the
keyboard. The letter 'a' is seen as 'a', the number 1 is seen as '1'. Some characters, Control Key, Escape,
Enter, to name a few, are invisible characters. They are imbedded in the sequential text file but cannot be
seen. The LOF() function incudes these characters when counting the size of the file. The INPUTed
variables do not include these end-of-line markers.

EOF - End of File

Liberty BASIC uses a special End of File function, EOF(), to determine if the End of File has been
reached. If the End of File has been reached, EOF returns 1 (True). If the End of File has not been
reached, EOF returns 0 (False). EOF is useful for retrieving information when the file contains an
unknown amount of data.

OPEN "TwainNovels.txt" for INPUT as #1
 WHILE EOF(#1) = 0
 INPUT #1, n$
 PRINT n$
 WEND
CLOSE #1
END

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

WHILE EOF(#1) = 0 translates to While the End of File is false (hasn't been reached)

This could also be coded as

OPEN "TwainNovels.txt" for INPUT as #1

 page 5 / 19

Liberty BASIC Programmer's Encyc

 WHILE EOF(#1) <> 1
 INPUT #1, n$
 PRINT n$
 WEND
CLOSE #1
END

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

WHILE EOF(#1) 1 translates to While the End of File is not true (hasn't been reached)

A third way is to use the NOT() operator:
WHILE NOT(EOF(#1)) translates to While not at the End of File

In either case, the code continues to input data until the End of File has been reached.

Counting the Data

Sometimes the number of data needs to be known. This is especially true if an array is used to capture the
data. If a sequential text file contains an unknown number of data, use a counter to determine that exact
number. Increase the counter by one with each data read.

ct = 0
OPEN "TwainNovels.txt" for INPUT as #1
 DO
 ct = ct + 1
 INPUT #1, n$
 PRINT ct, n$
 LOOP WHILE EOF(#1) = 0
CLOSE #1
PRINT "There are ";ct;" items of data in this text file."
END

Output

1 Tom Sawyer
2 Huckleberry Finn

 page 6 / 19

Liberty BASIC Programmer's Encyc

3 The Prince and the Pauper
4 A Connecticut Yankee in King Arthur's Court
5 A Tramp Abroad
There are 5 items of data in this text file.

Once the number of data is known, DIM the array, OPEN the file again, and INPUT the data into the
array. Be sure to CLOSE the file first so the INPUT begans with the first data.

nNovels = 5 ' The number obtained by the counter
Dim TwainNovel$(nNovels)
OPEN "TwainNovels.txt" for INPUT as #1
 FOR i = 1 to nNovels
 INPUT #1, TwainNovel$(i)
 NEXT i
CLOSE #1
FOR i = 1 to nNovels
 PRINT TwainNovel$(i)
NEXT i
END

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

Recapping

To read a known number of data from a sequential file

OPEN the file
use a FOR NEXT loop to INPUT data
CLOSE the file

To read an unknown number of data from a sequential text file

OPEN the file
use a WHILE WEND to INPUT data until the EOF is reached
CLOSE the file

 page 7 / 19

Liberty BASIC Programmer's Encyc

To count the number of data in a sequential text file

OPEN the file
use a counter
use a DO LOOP to INPUT data until EOF is reached
CLOSE the file
OPEN the file again
use a FOR NEXT loop to INPUT data
CLOSE the file again

Comma Deliminators

It's not just End of Line markers that separate data; a comma will also separate data. Deliminator is
another word for separator. Run this code to create a new file.

OPEN "SevenDwarves.txt" for OUTPUT as #1
 PRINT #1, "Happy, Sleepy, Bashful, Grumpy, Sneezey, Doc, Dopey"
CLOSE #1
END

Next, read the file.

OPEN "SevenDwarves.txt" for INPUT as #1
 INPUT #1, dwarf$
 PRINT dwarf$
CLOSE #1
END

Output

Happy

Where are the rest of the dwarves? INPUT will only grab data up to, but not including, the comma. Use
either a FOR NEXT loop if you know the number of data to INPUT

' Number of data is known
OPEN "SevenDwarves.txt" for INPUT as #1
 FOR i = 1 to 7
 INPUT #1, dwarf$
 PRINT dwarf$
 NEXT i
CLOSE #1

 page 8 / 19

Liberty BASIC Programmer's Encyc

END

Output

Happy
Sleepy
Bashful
Grumpy
Sneezey
Doc
Dopey

or use a WHILE WEND loop if you don't.

' Number of data unknown
OPEN "SevenDwarves.txt" for INPUT as #1
 WHILE EOF(#1) = 0
 INPUT #1, dwarf$
 PRINT dwarf$
 WEND
CLOSE #1
END

Output

Happy
Sleepy
Bashful
Grumpy
Sneezey
Doc
Dopey

It isn't always desirable to deliminate data with commas. To place the entire line of data, including any
commas, in a variable, use LINE INPUT.

Line Input

LINE INPUT will extract the full line of data, up to the End of Line markers. LINE INPUT ignores
commas as deliminators.

OPEN "SevenDwarves.txt" for INPUT as #1

 page 9 / 19

Liberty BASIC Programmer's Encyc

 LINE INPUT #1, dwarf$
 PRINT dwarf$
CLOSE #1
END

Output

Happy, Sleepy, Bashful, Grumpy, Sneezey, Doc, Dopey

Assigning a Unique Deliminator

Actually, any character can be assigned as the deliminator. The assigned deliminator is substituted for the
usual comma deliminator. The command for assigning a unique deliminator is INPUTTO$(). The
following code separates the SevenDwarves data at the r.

OPEN "SevenDwarves.txt" for INPUT as #1
 For i = 1 to 2
 n$ = INPUTTO$(#1, "r")
 PRINT n$
 Next i
CLOSE #1
END

Output

Happy, Sleepy, Bashful, G
umpy, Sneezey, Doc, Dopey

The unique deliminator, in this case the r, is lost, just as the comma is lost with INPUT. Note, also, that
assigning a unique deliminator does not prevent the usual End of Line marker, Chr$(13);Chr$(10), from
forcing a new line.

OPEN "TwainNovels.txt" for INPUT as #1
 WHILE EOF(#1) = 0
 n$ = INPUTTO$(#1, "r")
 PRINT n$
 WEND
CLOSE #1
END

Output

 page 10 / 19

Liberty BASIC Programmer's Encyc

Tom Sawye

Hucklebe

y Finn
The P
ince and the Paupe

A Connecticut Yankee in King A
thu
's Cou
t
A T
amp Ab
oad

The blank lines are the result of the Chr$(13);Chr$(10) End of Line markers.

Placing the Entire Contents of the File into One String Variable

Partial or full contents of the file can be read using the INPUT$() function. Contents of the file, from the
beginning to a defined number of bytes can be placed in a string variable.

OPEN "TwainNovels.txt" for INPUT as #1
 n$ = INPUT$(#1, 15)
CLOSE #1
PRINT n$
END

Output

Tom Sawyer
Huc

Only 13 characters are visible. The other 2 bytes are the invisible characters, Chr$(13) and Chr$(10), that
force a new line at the end of Tom Sawyer.

OPEN "TwainNovels.txt" for INPUT as #1
 n$ = INPUT$(#1, 15)
CLOSE #1
PRINT n$
FOR i = 1 to LEN(n$)

 page 11 / 19

Liberty BASIC Programmer's Encyc

 PRINT i, MID$(n$, i, 1), ASC(MID$(n$, i, 1))
NEXT i
END

Output

Tom Sawyer
Huc
1 T 84
2 o 111
3 m 109
4 32
5 S 83
6 a 97
7 w 119
8 y 121
9 e 101
10 r 114
11 13
12 10
13 H 72
14 u 117
15 c 99

The entire contents of the file may be read and stored in one string variable. This may be useful for text
files containing narrative paragraphs, or for later parsing of unknown data. Whatever the reason, the entire
contents is defined with the LOF() function.

OPEN "TwainNovels.txt" for INPUT as #1
 n$ = INPUT$(#1, LOF(#1))
CLOSE #1
PRINT n$
END

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

Recapping

 page 12 / 19

Liberty BASIC Programmer's Encyc

Read a simple sequential text file with the INPUT command
Read an entire line of data, including commas, with the LINE INPUT command
Read the entire file as one string variable with the INPUT$() and LOF() functions

Appending a Sequential Text File

PRINTing to a sequential text file that's been OPENed for OUTPUT will not place the new text at the end
of the file. It will, in fact, overwrite the file.

OPEN "TwainNovels.txt" for OUTPUT as #1
 PRINT #1, "The Guilded Age"
CLOSE #1
OPEN "TwainNovels.txt" for INPUT as #1
 n$ = INPUT$(#1, LOF(#1))
CLOSE #1
PRINT n$
END

Ouput

The Guilded Age

"The Guilded Age" was not added to the contents of TwainNovels.txt, but, instead, replaced the contents
of TwainNovels.txt. To add information to an existing sequential text file, use the APPEND command.
First, rebuild the original TwainNovels.txt file.

OPEN "TwainNovels.txt" for OUTPUT as #1
 PRINT #1, "Tom Sawyer"
 PRINT #1, "Huckleberry Finn"
 PRINT #1, "The Prince and the Pauper"
 PRINT #1, "A Connecticut Yankee in King Arthur's Court"
 PRINT #1, "A Tramp Abroad"
CLOSE #1

Read the contents of the file.

OPEN "TwainNovels.txt" for INPUT as #1
 FOR i = 1 to 5
 INPUT #1, n$
 PRINT n$
 NEXT i
CLOSE #1
END

 page 13 / 19

Liberty BASIC Programmer's Encyc

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad

Now, OPEN the file for APPEND to add more content.

OPEN "TwainNovels.txt" for APPEND as #1
 PRINT #1, "The Guilded Age"
CLOSE #1
OPEN "TwainNovels.txt" for INPUT as #1
 FOR i = 1 to 6
 INPUT #1, n$
 PRINT n$
 NEXT i
CLOSE #1
END

Output

Tom Sawyer
Huckleberry Finn
The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court
A Tramp Abroad
The Guilded Age

Recapping

To create a new sequential text file, use OPEN for OUTPUT
To read a sequential text file, use OPEN for INPUT
To add content to an existing text file, use OPEN for APPEND

Common Errors with Sequential Text File Programming

Liberty BASIC will halt execution with an error message if any problems are encountered during opening,
reading, and writing sequential text files. The following code will present no error if TwainNovels.txt
remains present in the relevant Liberty BASIC directory.

 page 14 / 19

Liberty BASIC Programmer's Encyc

 ON ERROR GOTO [ErrorDeBug]
 OPEN "TwainNovels.txt" for INPUT as #1
 FOR i = 1 to 5
 INPUT #1, n$
 PRINT n$
 NEXT i
 CLOSE #1
END

[ErrorDeBug]
 PRINT Err
END

Errors will occur if the file can't be found, can't be opened, can't be written to, or attempts are made to
extract data that isn't there.

File Doesn't Exist (Err = 62)

can happen when the file doesn't exist, when the file name is simply misspelled or when the path to that
file is wrong. This is a common occurance when a path is hardcoded rather than relevant.

Example

' TwainNovels is misspelled TwainNovel
 ON ERROR GOTO [ErrorDeBug]
 OPEN "TwainNovel.txt" for INPUT as #1
 FOR i = 1 to 5
 INPUT #1, n$
 PRINT n$
 NEXT i
 CLOSE #1
END

[ErrorDeBug]
 PRINT Err
END

Liberty BASIC closes, giving the warning

Runtime Error: OS Error: The system cannot find the file specified.
(see error.log for more information)

File Already Open (Err = 0)

 page 15 / 19

Liberty BASIC Programmer's Encyc

occurs when an attempt is made to OPEN a file that is already OPEN.

Example

' TwainNovels.txt is opened twice
 ON ERROR GOTO [ErrorDeBug]
 OPEN "TwainNovels.txt" for INPUT as #1
 OPEN "TwainNovels.txt" for INPUT as #1
 FOR i = 1 to 5
 INPUT #1, n$
 PRINT n$
 NEXT i
 CLOSE #1
END

[ErrorDeBug]
 PRINT Err
END

Liberty BASIC first gives a notice that the program has ended and all open windows and files have been
closed

Please Note:
#1
These handles closed by Liberty BASIC.
Please add the appropriate CLOSE commands.

then a warning is given regarding the error.

Warning
Runtime Error: Handle #1 already in use
(see error.log for more information)

Note that there is not an Error number associated with this error.

Input Past End of File (Err = 62)

occurs when attempts are made to extract more data than what the file holds.

Example

 page 16 / 19

Liberty BASIC Programmer's Encyc

' Run out of data
 ON ERROR GOTO [ErrorDeBug]
 OPEN "TwainNovels.txt" for INPUT as #1
 FOR i = 1 to 20
 INPUT #1, n$
 PRINT n$
 NEXT i
 CLOSE #1
END

[ErrorDeBug]
 PRINT Err
END

The usual Liberty BASIC notice that the program has ended and all open windows and files have been
closed is given

Please Note:
#1
These handles closed by Liberty BASIC.
Please add the appropriate CLOSE commands.

followed by a warning regarding the error.

Warning
Runtime Error: Input past end of file: #1
(see error.log for more information)

Attempting to INPUT data from a file OPENed for OUTPUT (Err = 62)

Liberty BASIC creates a new file whenever that file is OPENed for OUTPUT. Attempts to then INPUT
data will result in the same error as attempting to extract more data than what the file holds.

Example

' Input from file opened for Output
 ON ERROR GOTO [ErrorDeBug]
 OPEN "TwainNovel.txt" for OUTPUT as #1
 FOR i = 1 to 5
 INPUT #1, n$
 PRINT n$
 NEXT i
 CLOSE #1

 page 17 / 19

Liberty BASIC Programmer's Encyc

END

[ErrorDeBug]
 PRINT Err
END

Liberty BASIC will close all windows, files, and the program itself

Please Note:
#1
These handles closed by Liberty BASIC.
Please add the appropriate CLOSE commands.

and then give the error warning.

Warning
Runtime Error: Input past end of file: #1
(see error.log for more information)

Writing to a File OPENed for INPUT (Err = 0)

results in a serious error, from which Liberty BASIC cannot recover. It is NOT RECOMMENDED that you
run the following code, as you WILL have to use the TASK MANAGER to recover and end the program.

Example

 ON ERROR GOTO [ErrorDeBug]
 OPEN "TwainNovels.txt" for INPUT as #1
 PRINT #1, "A Guilded Age"
 CLOSE #1
END

[ErrorDeBug]
 PRINT Err
END

results in this warning

Runtime Error: FileSystemAccessDenied
(see error.log for more information)

Again, you WILL have to use the TASK MANAGER to recover from this error.

 page 18 / 19

Liberty BASIC Programmer's Encyc

For more information on errors and debugging your program, see Fast FAQ.

Advantages and Disadvantages of a Sequential Text File

Sequential text files can be used to store any type of data. The structure is simple and the contents are
easily obtainable. Sequential text files must be read starting from the beginning. As files increase in size, it
may become time consuming to search for information toward the end of the file. Any change to the file
necessitates a rewriting of the entire file to disk. Still, for small amounts of data, sequential text files offer
the most economical option.

More on Files

An Introduction to Working with Files

Powered by TCPDF (www.tcpdf.org)

 page 19 / 19

/FastFAQ
/IntroToFiles
http://www.tcpdf.org

	TutorialSequentialTextFile

