Liberty BASIC Programmer's Encyc

FILES For Dummies

- by -

alix
or how fto find your way around the FILES statements without getting lost!
This file was created on Mar 9, 2008 12:08 am

Are you one of those programmers that gets filled with dread each time they have to make use of the
FILES statement? Do you think "Oh no, not that FILES statement again!" because you know it's going to
take several trials and errors runs before you get it right? All you want is to retrieve some simple

information about a specific directory, and then get on with the rest of your program...

Why suffer? Here is a painless way of remembering how to use the FILES statement so that you can get
the information you need about files and directories with minimum frustration.

Draw it!

Most of us understand that the FILES statement stores information in a double-dimensioned string array.
FILES will also take care of adjusting the size of this array in case more space is needed. So we dutifully
start our code with:

di minfo$(10, 10)
Now what?
That's where the trouble starts...
1. First problem : Where does the all powerful FILES statement store its info?
2. Second Problem : How do we ask Mr. All Powerful to give us the info we need?
Note that problem 2 depends heavily on Problem 1 being solved.

This is where a simple drawing comes to the rescue.
Draw the info$() array as a table with rows and columns. Then, write each item of info in each cell :

page 1/3


https://www.wikispaces.com/user/view/alix
https://www.wikispaces.com/user/view/alix

Liberty BASIC Programmer's Encyc

InfoS(x.y) 0 1 2 3

0 n=Number of N=Number of
Files

Subdirectories Drive Path

Attributes :
1 Name of file 1 File Size Date/Time rhisia

2 Name of file 2 File Size DatefTime G
rihis/a

n Name of lastfile File Size DatefTime Atributes:
rihis/a

el Path + Name of Name of
Subdirectory1 Subdirectory1

Path + Name of Name of
Subdirectory2 Subdirectory2

neN Path+Name of Name of last
last subdir subdir

Et voila! The next time you must use the FILES statement, have a look at the FILES table. Now you can
quickly locate the info you need. It is as as easy as playing Bingo:

Want to know in which drive is your folder? That's info$(0,2)

e How many subdirectories are there in your folder? That's info$(0,1)

e Name the second file in your folder? That's : info$(2,0)

Is the third file in your folder read only? That's : check info$(3,3) if it contains an r

Note: r = readonly ; h = hidden ; s = system ; a = archive

Examples :
To finish, let's have some simple examples.

In both examples I chose DefaultDir$ so that you can copy and paste my code, and run it without any
problems.But, you could have something like:

nyf ol der $="C: \ anyf ol der"

It's also important that you dim an array to hold the retrieved information. This should be done in the
beginning of your program. The FILES command will take care of redimming (resizing) the array as
needed, but it must be defined before the FILES command is used. In these examples, the array is named
info$()

diminfo$(1l, 1)

How to list all the files contained in your folder:

diminfo$(1l, 1)

page2/3



Liberty BASIC Programmer's Encyc

nyf ol der $=Defaul tDi r $

FI LES nyfol der$, info$()

totfiles = val (info$(0,0))

for i=1 to totfiles
name$= i nf o$(i, 0)
print "-";nanme$

next

How to list all the subdirectories contained in your folder:

diminfo$(1, 1)

nyfol der$=Defaul tDir$

FI LES nyfol der$, info$()

totfiles = val (info$(0,0))

tot subs = val (i nfo$(0,1))

for i=totfiles+l to totfil es+totsubs
name$= i nf o$(i, 1)
print "-";nanme$

next

page 3/3


http://www.tcpdf.org

	UsingTheFilesStatement

